logo
    Abstract:
    In December 2022, highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus emerged in Chile. We detected H5N1 virus in 93 samples and obtained 9 whole-genome sequences of strains from wild birds. Phylogenetic analysis suggests multiple viral introductions into South America. Continued surveillance is needed to assess risks to humans and domestic poultry.
    Keywords:
    Highly pathogenic
    H5N1 genetic structure
    Pandemic
    Migrating wild birds are considered natural reservoirs of influenza viruses and serve as a potential source of novel influenza strains in humans and livestock. During routine avian influenza surveillance conducted in eastern China, a novel H5N8 ( SH ‐9) reassortant influenza virus was isolated from a mallard duck in China. blast analysis revealed that the HA , NA , PB 1, PA , NP , and M segments of SH ‐9 were most closely related to the corresponding segments of A/duck/Jiangsu/k1203/2010 (H5N8). The SH ‐9 virus preferentially recognized avian‐like influenza virus receptors and was highly pathogenic in mice. Our results suggest that wild birds could acquire the H5N8 virus from breeding ducks and spread the virus via migratory bird flyways.
    Southern china
    Citations (70)
    Wild waterfowl captured between 1915 and 1919 were tested for influenza A virus RNA. One bird, captured in 1917, was infected with a virus of the same hemagglutinin (HA) subtype as that of the 1918 pandemic virus. The 1917 HA is more closely related to that of modern avian viruses than it is to that of the pandemic virus, suggesting (i) that there was little drift in avian sequences over the past 85 years and (ii) that the 1918 pandemic virus did not acquire its HA directly from a bird.
    Pandemic
    H5N1 genetic structure
    Abstract Highly pathogenic avian influenza A(H5N8) virus was detected in mute swans in the Netherlands during October 2020. The virus shares a common ancestor with clade 2.3.4.4b viruses detected in Egypt during 2018–2019 and has similar genetic composition. The virus is not directly related to H5N8 viruses from Europe detected in the first half of 2020.
    Highly pathogenic
    Ancestor
    Citations (23)
    In December 2022, highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus emerged in Chile. We detected H5N1 virus in 93 samples and obtained 9 whole-genome sequences of strains from wild birds. Phylogenetic analysis suggests multiple viral introductions into South America. Continued surveillance is needed to assess risks to humans and domestic poultry.
    Highly pathogenic
    H5N1 genetic structure
    Pandemic
    Citations (29)
    Timely identification of pandemic influenza threats depends on monitoring for highly pathogenic avian influenza viruses. We isolated highly pathogenic avian influenza A(H5N6) virus clade 2.3.4.4, genotype G1.1, in samples from a bird in southwest Russia. The virus has high homology to human H5N6 influenza strains isolated from southeast China.
    Highly pathogenic
    Pandemic
    H5N1 genetic structure
    Citations (5)
    Highly pathogenic avian influenza A viruses (HPAIV) of the H5N1 subtype occasionally transmit from birds to humans and can cause severe systemic infections in both hosts. PB1-F2 is an alternative translation product of the viral PB1 segment that was initially characterized as a pro-apoptotic mitochondrial viral pathogenicity factor. A full-length PB1-F2 has been present in all human influenza pandemic virus isolates of the 20th century, but appears to be lost evolutionarily over time as the new virus establishes itself and circulates in the human host. In contrast, the open reading frame (ORF) for PB1-F2 is exceptionally well-conserved in avian influenza virus isolates. Here we perform a comparative study to show for the first time that PB1-F2 is a pathogenicity determinant for HPAIV (A/Viet Nam/1203/2004, VN1203 (H5N1)) in both mammals and birds. In a mammalian host, the rare N66S polymorphism in PB1-F2 that was previously described to be associated with high lethality of the 1918 influenza A virus showed increased replication and virulence of a recombinant VN1203 H5N1 virus, while deletion of the entire PB1-F2 ORF had negligible effects. Interestingly, the N66S substituted virus efficiently invades the CNS and replicates in the brain of Mx+/+ mice. In ducks deletion of PB1-F2 clearly resulted in delayed onset of clinical symptoms and systemic spreading of virus, while variations at position 66 played only a minor role in pathogenesis. These data implicate PB1-F2 as an important pathogenicity factor in ducks independent of sequence variations at position 66. Our data could explain why PB1-F2 is conserved in avian influenza virus isolates and only impacts pathogenicity in mammals when containing certain amino acid motifs such as the rare N66S polymorphism.
    H5N1 genetic structure
    Citations (137)
    We compared the abilities of the six internal RNA segments of two avian influenza viruses, A/Mallard/Alberta/88/76 (H3N8) and A/Mallard/NY/6750/78 (H2N2), to confer attenuation on wild-type human influenza A/Bethesda/1/85 (H3N2) virus in seronegative adult volunteers. Live avian-human influenza A reassortant virus vaccines derived from either avian virus parent were comparable in the following properties: safety, infectivity, immunogenicity, and genetic stability. Since the avian influenza A/Mallard/Alberta/76 virus offered no clear advantage as a donor virus, we will conduct our future evaluations on live influenza A virus reassortants derived from the more extensively characterized avian influenza A/Mallard/NY/78 virus.
    Infectivity
    H5N1 genetic structure
    Inactivated influenza virus vaccine prepared from a non-pathogenic influenza virus strain A/duck/Hokkaido/Vac-1/2004 (H5N1) from the virus library conferred protective immunity to chickens against the challenge of antigenically drifted highly pathogenic avian influenza virus (HPAIV), A/whooper swan/Hokkaido/1/2008 (H5N1). The efficacy of the vaccine was comparable to that prepared from genetically modified HPAIV strain deltaRRRRK rg-A/ whooper swan/Mongolia/3/2005 (H5N1), which is more antigenically related to the challenge virus strain, in chickens.
    Highly pathogenic
    Strain (injury)
    H5N1 genetic structure
    Inactivated vaccine
    Citations (5)