logo
    Conductive, self-healing, and antibacterial Ag/MXene-PVA hydrogel as wearable skin-like sensors
    19
    Citation
    53
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    The rapid development of flexible electronic technology has led to the in-depth study of flexible wearable sensors to achieve accurate sensing under different external stimuli. However, it is still a huge challenge to develop hydrogel-based wearable skin-like sensors with super ductility, high sensitivity, and self-healing properties. Herein, the Ti 3 C 2 type of MXene was synthesized, and the Ag/MXene nanocomplexes were incorporated into polyvinyl alcohol-borax matrix to construct a novel composite hydrogel as the multifunctional nanofillers, which could bring both improved properties and novel functionalities. The Ag/MXene-Poly (vinyl alcohol) (PVA) hydrogel displayed integrated merits of highly strain sensitive (GF = 3.26), self-healing (within 10 min, 91% healing efficiency), and excellent antibacterial activity. The hydrogel could be assembled into a wearable skin-like sensor to monitor human movement, including large deformations (finger, elbow, wrist, and knee bending) and tiny deformations (mouth’s movement and throat vocalization) in real time. Therefore, this work shed a new light on the development of flexible wearable skin-like sensors for the personalized healthcare monitoring, human–machine interfaces, and artificial intelligence.
    Keywords:
    Polyvinyl Alcohol
    Background: Hydrogels, a kind of three-dimensional (3-D) cross-linked polymer networks with higher water concentration, are receiving more and more attention in the recent years. Self-healing hydrogels, which can return to their original structure and function after physical damage, are especially attractive. Some self-healable hydrogels have several kinds of properties such as injectability, adhesiveness, conductivity, etc., which enable them to be used in the manufacture of drug/cell delivery vehicles, glues, electronic devices and so on. Main body: This review will focus on the self-healing hydrogel synthesis and applications s. Their repair mechanisms and potential applications in pharmaceutical, biomedical and others will be introduced. Conclusions: Self-healing hydrogels are used in various fields because of their ability to recover. Nowadays, new designs such as self-healing double-network (DN) hydrogels are developed to overcome the limitations of other soft materials, providing them with better mechanical properties. The prospect of self-healing hydrogels is promising and they may be further developed for more various applications.
    Citations (41)
    The relatively weak mechanical properties of hydrogels remain a major drawback for their application as load-bearing tissue scaffolds. Previously, we developed cell-laden double-network (DN) hydrogels that were composed of photocrosslinkable gellan gum (GG) and gelatin. Further research into the materials as tissue scaffolds determined that the strength of the DN hydrogels decreased when they were prepared at cell-compatible conditions, and the encapsulated cells in the DN hydrogels did not function as well as they did in gelatin hydrogels. In this work, we developed microgel-reinforced (MR) hydrogels from the same two polymers, which have better mechanical strength and biological properties in comparison to the DN hydrogels. The MR hydrogels were prepared by incorporating stiff GG microgels into soft and ductile gelatin hydrogels. The MR hydrogels prepared at cell-compatible conditions exhibited higher strength than the DN hydrogels and the gelatin hydrogels, the highest strength being 2.8 times that of the gelatin hydrogels. MC3T3-E1 preosteoblasts encapsulated in MR hydrogels exhibited as high metabolic activity as in gelatin hydrogels, which is significantly higher than that in the DN hydrogels. The measurement of alkaline phosphatase (ALP) activity and the amount of mineralization showed that osteogenic behavior of MC3T3-E1 cells was as much facilitated in the MR hydrogels as in the gelatin hydrogels, while it was not as much facilitated in the DN hydrogels. These results suggest that the MR hydrogels could be a better alternative to the DN hydrogels and have great potential as load-bearing tissue scaffolds.
    Gelatin
    Gellan gum
    Citations (52)
    Abstract Without the introduction of new functional groups, altering the properties of a substance, such as by changing from a non-self-healing to a rapidly self-healing material, is often difficult. In this work, we report that the properties of 2-hydroxyethyl methacrylate and acrylamide (HEMA/AAm) hydrogels can be easily altered from non-self-healing to rapidly self-healing by simply tuning the reaction temperature. Notably, the hydrogels that are prepared at room temperature do not exhibit self-healing behavior, while those treated at an elevated temperature show automatic self-healing performance within ~15 s. Interestingly, in contrast with the previous self-healing HEMA-based polymeric hydrogels, which function only above their glass transition temperatures ( T g ), the hydrogels prepared herein exhibit rapid self-healing properties at room temperature, which is below their T g . In addition, the stretching capabilities of the hydrogels can be greatly enhanced by up to 30-fold. The hydrogels also exhibit good adhesive performance and can adhere strongly onto various substrates, such as wood, glass, fabric, paper, leather, porcelain, and steel. For example, a 10 kg weight could be suspended from a wooden substrate with the aid of these hydrogels. These results may provide valuable insight regarding the design of self-healing hydrogels and their large-scale production.
    Citations (73)
    A hydrogel is a three-dimensional structure that holds plenty of water, but brittleness largely limits its application. Self-healing hydrogels, a new type of hydrogel that can be repaired by itself after external damage, have exhibited better fatigue resistance, reusability, hydrophilicity, and responsiveness to environmental stimuli. The past decade has seen rapid progress in self-healing hydrogels. Self-healing hydrogels can automatically self-repair after external damage. Different strategies have been proposed, including dynamic covalent bonds and reversible noncovalent interactions. Compared to traditional hydrogels, self-healing gels have better durability, responsiveness, and plasticity. These features allow the hydrogel to survive in harsh environments or even to be injected as a drug carrier. Here, we summarize the common strategies for designing self-healing hydrogels and their potential applications in clinical practice.
    Regenerative Medicine
    Self-healing material
    Brittleness
    Citations (35)
    Research on hydrogels has been geared toward biomedical applications from the beginning due to their relatively high biocompatibility. Initially only the hydrophilic nature and the large swelling properties of hydrogels was explored. Continued research on hydrogels has resulted in the development of new types of hydrogels, such as environment-sensitive hydrogels, thermoplastic hydrogels, hydrogel foams, and sol-gel phase-reversible hydrogels. Application of hydrogels ranges from biomedical devices to solute separation. Examples of hydrogel applications in pharmaceutics, biomaterials, and biotechnology are briefly described.
    Biocompatibility
    Pharmaceutics
    Citations (74)
    The relatively weak mechanical properties of hydrogels remain a major drawback for their application as load-bearing tissue scaffolds. Previously, we developed cell-laden double-network (DN) hydrogels that were composed of photocrosslinkable gellan gum (GG) and gelatin. Further research into the materials as tissue scaffolds determined that the strength of the DN hydrogels decreased when they were prepared at cell-compatible conditions, and the encapsulated cells in the DN hydrogels did not function as well as they did in gelatin hydrogels. In this work, we developed microgel-reinforced (MR) hydrogels from the same two polymers, which have better mechanical strength and biological properties in comparison to the DN hydrogels. The MR hydrogels were prepared by incorporating stiff GG microgels into soft and ductile gelatin hydrogels. The MR hydrogels prepared at cell-compatible conditions exhibited higher strength than the DN hydrogels and the gelatin hydrogels, the highest strength being 2.8 times that of the gelatin hydrogels. MC3T3-E1 preosteoblasts encapsulated in MR hydrogels exhibited as high metabolic activity as in gelatin hydrogels, which is significantly higher than that in the DN hydrogels. The measurement of alkaline phosphatase (ALP) activity and the amount of mineralization showed that osteogenic behavior of MC3T3-E1 cells was as much facilitated in the MR hydrogels as in the gelatin hydrogels, while it was not as much facilitated in the DN hydrogels. These results suggest that the MR hydrogels could be a better alternative to the DN hydrogels and have great potential as load-bearing tissue scaffolds.
    Gelatin
    Gellan gum
    Citations (0)