Temperature-regulated flexibility of polymer chains in rapidly self-healing hydrogels
73
Citation
42
Reference
10
Related Paper
Citation Trend
Abstract:
Abstract Without the introduction of new functional groups, altering the properties of a substance, such as by changing from a non-self-healing to a rapidly self-healing material, is often difficult. In this work, we report that the properties of 2-hydroxyethyl methacrylate and acrylamide (HEMA/AAm) hydrogels can be easily altered from non-self-healing to rapidly self-healing by simply tuning the reaction temperature. Notably, the hydrogels that are prepared at room temperature do not exhibit self-healing behavior, while those treated at an elevated temperature show automatic self-healing performance within ~15 s. Interestingly, in contrast with the previous self-healing HEMA-based polymeric hydrogels, which function only above their glass transition temperatures ( T g ), the hydrogels prepared herein exhibit rapid self-healing properties at room temperature, which is below their T g . In addition, the stretching capabilities of the hydrogels can be greatly enhanced by up to 30-fold. The hydrogels also exhibit good adhesive performance and can adhere strongly onto various substrates, such as wood, glass, fabric, paper, leather, porcelain, and steel. For example, a 10 kg weight could be suspended from a wooden substrate with the aid of these hydrogels. These results may provide valuable insight regarding the design of self-healing hydrogels and their large-scale production.Background: Hydrogels, a kind of three-dimensional (3-D) cross-linked polymer networks with higher water concentration, are receiving more and more attention in the recent years. Self-healing hydrogels, which can return to their original structure and function after physical damage, are especially attractive. Some self-healable hydrogels have several kinds of properties such as injectability, adhesiveness, conductivity, etc., which enable them to be used in the manufacture of drug/cell delivery vehicles, glues, electronic devices and so on. Main body: This review will focus on the self-healing hydrogel synthesis and applications s. Their repair mechanisms and potential applications in pharmaceutical, biomedical and others will be introduced. Conclusions: Self-healing hydrogels are used in various fields because of their ability to recover. Nowadays, new designs such as self-healing double-network (DN) hydrogels are developed to overcome the limitations of other soft materials, providing them with better mechanical properties. The prospect of self-healing hydrogels is promising and they may be further developed for more various applications.
Cite
Citations (41)
Two GC/MS methods for acrylamide determination in potato crisps were used. By the method without derivatisation the presence of acrylamide was confirmed. The quantities of acrylamide were compared by the bromination method with <sup>13</sup>C<sub>3</sub>-acrylamide and D<sub>3</sub>-acrylamide as internal standards. A suitable agreement between the results obtained from two independent laboratories was achieved; the difference was less than 5%. Using average level of acrylamide in crisps 986.5 μg/kg and mean consumption data on potato crisps in Slovakia it was calculated that consumers are exposed to 8.5 μg acrylamide daily from its which means 0.12 μg/kg body weight/day. This amount contributes to 20–40% of daily acrylamide intake from food.
Cite
Citations (13)
The relatively weak mechanical properties of hydrogels remain a major drawback for their application as load-bearing tissue scaffolds. Previously, we developed cell-laden double-network (DN) hydrogels that were composed of photocrosslinkable gellan gum (GG) and gelatin. Further research into the materials as tissue scaffolds determined that the strength of the DN hydrogels decreased when they were prepared at cell-compatible conditions, and the encapsulated cells in the DN hydrogels did not function as well as they did in gelatin hydrogels. In this work, we developed microgel-reinforced (MR) hydrogels from the same two polymers, which have better mechanical strength and biological properties in comparison to the DN hydrogels. The MR hydrogels were prepared by incorporating stiff GG microgels into soft and ductile gelatin hydrogels. The MR hydrogels prepared at cell-compatible conditions exhibited higher strength than the DN hydrogels and the gelatin hydrogels, the highest strength being 2.8 times that of the gelatin hydrogels. MC3T3-E1 preosteoblasts encapsulated in MR hydrogels exhibited as high metabolic activity as in gelatin hydrogels, which is significantly higher than that in the DN hydrogels. The measurement of alkaline phosphatase (ALP) activity and the amount of mineralization showed that osteogenic behavior of MC3T3-E1 cells was as much facilitated in the MR hydrogels as in the gelatin hydrogels, while it was not as much facilitated in the DN hydrogels. These results suggest that the MR hydrogels could be a better alternative to the DN hydrogels and have great potential as load-bearing tissue scaffolds.
Gelatin
Gellan gum
Cite
Citations (52)
Abstract Without the introduction of new functional groups, altering the properties of a substance, such as by changing from a non-self-healing to a rapidly self-healing material, is often difficult. In this work, we report that the properties of 2-hydroxyethyl methacrylate and acrylamide (HEMA/AAm) hydrogels can be easily altered from non-self-healing to rapidly self-healing by simply tuning the reaction temperature. Notably, the hydrogels that are prepared at room temperature do not exhibit self-healing behavior, while those treated at an elevated temperature show automatic self-healing performance within ~15 s. Interestingly, in contrast with the previous self-healing HEMA-based polymeric hydrogels, which function only above their glass transition temperatures ( T g ), the hydrogels prepared herein exhibit rapid self-healing properties at room temperature, which is below their T g . In addition, the stretching capabilities of the hydrogels can be greatly enhanced by up to 30-fold. The hydrogels also exhibit good adhesive performance and can adhere strongly onto various substrates, such as wood, glass, fabric, paper, leather, porcelain, and steel. For example, a 10 kg weight could be suspended from a wooden substrate with the aid of these hydrogels. These results may provide valuable insight regarding the design of self-healing hydrogels and their large-scale production.
Cite
Citations (73)
A hydrogel is a three-dimensional structure that holds plenty of water, but brittleness largely limits its application. Self-healing hydrogels, a new type of hydrogel that can be repaired by itself after external damage, have exhibited better fatigue resistance, reusability, hydrophilicity, and responsiveness to environmental stimuli. The past decade has seen rapid progress in self-healing hydrogels. Self-healing hydrogels can automatically self-repair after external damage. Different strategies have been proposed, including dynamic covalent bonds and reversible noncovalent interactions. Compared to traditional hydrogels, self-healing gels have better durability, responsiveness, and plasticity. These features allow the hydrogel to survive in harsh environments or even to be injected as a drug carrier. Here, we summarize the common strategies for designing self-healing hydrogels and their potential applications in clinical practice.
Regenerative Medicine
Self-healing material
Brittleness
Cite
Citations (35)
Abstract Hydrophilic three‐dimensional polymer networks (hydrogels) were prepared from glyceryl methacrylate (2,3‐dihydroxypropyl methacrylate). The solubility of poly(glyceryl methacrylate) in water permits the preparation of transparent hydrogels containing variable amounts of water at the equilibrium stage. This is accomplished by varying the degree of swelling at the time of network formation, and by varying the density of crosslinks. The temperature dependence of swelling of the hydrogels in water and in 0.9% sodium chloride solution, was determined. There exists a linear relationship between the refractive index and the per cent of water in the hydrogel. These hydrogels are potentially useful in ophthalmology.
Cite
Citations (86)
Cite
Citations (3)
The relatively weak mechanical properties of hydrogels remain a major drawback for their application as load-bearing tissue scaffolds. Previously, we developed cell-laden double-network (DN) hydrogels that were composed of photocrosslinkable gellan gum (GG) and gelatin. Further research into the materials as tissue scaffolds determined that the strength of the DN hydrogels decreased when they were prepared at cell-compatible conditions, and the encapsulated cells in the DN hydrogels did not function as well as they did in gelatin hydrogels. In this work, we developed microgel-reinforced (MR) hydrogels from the same two polymers, which have better mechanical strength and biological properties in comparison to the DN hydrogels. The MR hydrogels were prepared by incorporating stiff GG microgels into soft and ductile gelatin hydrogels. The MR hydrogels prepared at cell-compatible conditions exhibited higher strength than the DN hydrogels and the gelatin hydrogels, the highest strength being 2.8 times that of the gelatin hydrogels. MC3T3-E1 preosteoblasts encapsulated in MR hydrogels exhibited as high metabolic activity as in gelatin hydrogels, which is significantly higher than that in the DN hydrogels. The measurement of alkaline phosphatase (ALP) activity and the amount of mineralization showed that osteogenic behavior of MC3T3-E1 cells was as much facilitated in the MR hydrogels as in the gelatin hydrogels, while it was not as much facilitated in the DN hydrogels. These results suggest that the MR hydrogels could be a better alternative to the DN hydrogels and have great potential as load-bearing tissue scaffolds.
Gelatin
Gellan gum
Cite
Citations (0)
Zwitterionic hydrogels, including poly(sulfobetaine methacrylate) (polySBMA) and poly(carboxybetaine methacrylate) (polyCBMA), and co-polymeric hydrogels of CBMA and 2-hydroxyethyl methacrylate (HEMA) (poly(CBMA-co-HEMA)) were prepared. Their in vitro and in vivo properties were evaluated and compared with those of polyHEMA hydrogels. Bovine aortic endothelial cells (BAECs) were incubated with zwitterionic and polyHEMA hydrogels to evaluate their bioadhesion properties. Both polySBMA and polyCBMA hydrogels were found to be non-cytotoxic and their endotoxin levels were found to be acceptable for in vivo implantation. Results from in vivo subcutaneous implantation showed reduced cell attachment to the surfaces of polySBMA and poly(CBMA-co-HEMA) hydrogels after one-week implantation as compared with polyHEMA hydrogels. After a 4-week implantation, capsules with higher vascularities surrounding the two zwitterionic hydrogels were found. However, polyHEMA, polySBMA and poly(CBMA-co-HEMA) hydrogels showed similar capsule thicknesses and similar numbers of attached foreign body giant cells (FBGCs). In this work, zwitterionic hydrogels demonstrate healing and integration comparable to polyHEMA hydrogels, but with improved vascularity. These zwitterionic hydrogels are promising alternatives to polyHEMA hydrogels as implantable materials.
Cite
Citations (112)