logo
    Regeneration and Developmental Enhancers Are Differentially Compatible with Minimal Promoters
    0
    Citation
    73
    Reference
    10
    Related Paper
    Abstract:
    ABSTRACT Enhancers and promoters are cis -regulatory elements that control gene expression. Enhancers are activated in a cell type-, tissue-, and condition-specific manner to stimulate promoter function and transcription. Zebrafish have emerged as a powerful animal model for examining the activities of enhancers derived from various species through transgenic enhancer assays, in which an enhancer is coupled with a minimal promoter. However, the efficiency of minimal promoters and their compatibility with multiple developmental and regeneration enhancers have not been systematically tested in zebrafish. Thus, we assessed the efficiency of six minimal promoters and comprehensively interrogated the compatibility of the promoters with developmental and regeneration enhancers. We found that the fos minimal promoter and Drosophila synthetic core promoter (DSCP) yielded high rates of leaky expression that may complicate the interpretation of enhancer assays. Notably, the adenovirus E1b promoter, the zebrafish lepb 0.8-kb ( P0.8 ) and lepb 2-kb ( P2 ) promoters, and a new zebrafish synthetic promoter ( ZSP ) that combines elements of the E1b and P0.8 promoters drove little or no ectopic expression, making them suitable for transgenic assays. We also found significant differences in compatibility among specific combinations of promoters and enhancers, indicating the importance of promoters as key regulatory elements determining the specificity of gene expression. Our study provides guidelines for transgenic enhancer assays in zebrafish to aid in the discovery of functional enhancers regulating development and regeneration.
    Keywords:
    Enhancer RNAs
    The regulation of gene expression is a fundamental cellular process and its misregulation is a key component of disease. Enhancers are one of the most salient regulatory elements in the genome and help orchestrate proper spatiotemporal gene expression during development, in homeostasis, and in response to signaling. Notably, molecular aberrations at enhancers, such as translocations and single nucleotide polymorphisms, are emerging as an important source of human variation and susceptibility to disease. Herein we discuss emerging paradigms addressing how genes are regulated by enhancers, common features of active enhancers, and how non-coding enhancer RNAs (eRNAs) can direct gene expression programs that underlie cellular phenotypes. We survey the current evidence, which suggests that eRNAs can bind to transcription factors, mediate enhancer-promoter interactions, influence RNA Pol II elongation, and act as decoys for repressive cofactors. Furthermore, we discuss current methodologies for the identification of eRNAs and novel approaches to elucidate their functions.
    Enhancer RNAs
    Abstract Gene regulation in the human genome is controlled by distal enhancers that activate specific nearby promoters. One model for the specificity of enhancer-promoter regulation is that different promoters might have sequence-encoded preferences for distinct classes of enhancers, for example mediated by interacting sets of transcription factors or cofactors. This “biochemical compatibility” model has been supported by observations at individual human promoters and by genome-wide measurements in Drosophila . However, the degree to which human enhancers and promoters are intrinsically compatible or specific has not been systematically measured, and how their activities combine to control RNA expression remains unclear. To address these questions, we designed a high-throughput reporter assay called enhancer x promoter (ExP) STARR-seq and applied it to examine the combinatorial compatibilities of 1,000 enhancer and 1,000 promoter sequences in human K562 cells. We identify a simple logic for enhancer-promoter compatibility – virtually all enhancers activated all promoters by similar amounts, and intrinsic enhancer and promoter activities combine multiplicatively to determine RNA output ( R 2 =0.82). In addition, two classes of enhancers and promoters showed subtle preferential effects. Promoters of housekeeping genes contained built-in activating sequences, corresponding to motifs for factors such as GABPA and YY1, that correlated with both stronger autonomous promoter activity and enhancer activity, and weaker responsiveness to distal enhancers. Promoters of context-specific genes lacked these motifs and showed stronger responsiveness to enhancers. Together, this systematic assessment of enhancer-promoter compatibility suggests a multiplicative model tuned by enhancer and promoter class to control gene transcription in the human genome.
    Enhancer RNAs
    Enhancer trap
    Transcription
    Citations (3)
    Enhancer elements regulate the tissue- and developmental-stage-specific expression of genes. Recent estimates suggest that there are more than 50,000 enhancers in mammalian cells. At least a subset of enhancers has been shown to recruit RNA polymerase II transcription complexes and to generate enhancer transcripts. Here, we provide an overview of enhancer function and discuss how transcription of enhancers or enhancer-generated transcripts could contribute to the regulation of gene expression during development and differentiation.
    Enhancer RNAs
    Transcription
    RNA polymerase II
    Citations (8)
    ABSTRACT Enhancers and promoters are cis -regulatory elements that control gene expression. Enhancers are activated in a cell type-, tissue-, and condition-specific manner to stimulate promoter function and transcription. Zebrafish have emerged as a powerful animal model for examining the activities of enhancers derived from various species through transgenic enhancer assays, in which an enhancer is coupled with a minimal promoter. However, the efficiency of minimal promoters and their compatibility with multiple developmental and regeneration enhancers have not been systematically tested in zebrafish. Thus, we assessed the efficiency of six minimal promoters and comprehensively interrogated the compatibility of the promoters with developmental and regeneration enhancers. We found that the fos minimal promoter and Drosophila synthetic core promoter (DSCP) yielded high rates of leaky expression that may complicate the interpretation of enhancer assays. Notably, the adenovirus E1b promoter, the zebrafish lepb 0.8-kb ( P0.8 ) and lepb 2-kb ( P2 ) promoters, and a new zebrafish synthetic promoter ( ZSP ) that combines elements of the E1b and P0.8 promoters drove little or no ectopic expression, making them suitable for transgenic assays. We also found significant differences in compatibility among specific combinations of promoters and enhancers, indicating the importance of promoters as key regulatory elements determining the specificity of gene expression. Our study provides guidelines for transgenic enhancer assays in zebrafish to aid in the discovery of functional enhancers regulating development and regeneration.
    Enhancer RNAs
    Citations (0)
    Long non-coding RNAs (lncRNAs) have gained widespread interest in the past decade owing to their enormous amount and surprising functions implicated in a variety of biological processes. Some lncRNAs exert function as enhancers, i.e., activating gene transcription by serving as the cis-regulatory molecules. Furthermore, recent studies have demonstrated that many enhancer elements can be transcribed and produce RNA molecules, which are termed as enhancer RNAs (eRNAs). The eRNAs are not merely the by-product of the enhancer transcription. In fact, many of them directly exert or regulate enhancer activity in gene activation through diverse mechanisms. Here, we provide an overview of enhancer activity, transcription of enhancer itself, characteristics of eRNAs, as well as their roles in regulating enhancer activity and gene expression.
    Enhancer RNAs
    Transcription
    Citations (71)
    An essential questions of gene regulation is how large number of enhancers and promoters organize into gene regulatory loops. Using transcription-factor binding enrichment as an indicator of enhancer strength, we identified a portion of H3K27ac peaks as potentially strong enhancers and found a universal pattern of promoter and enhancer distribution: At actively transcribed regions of length of ∼200-300 kb, the numbers of active promoters and enhancers are inversely related. Enhancer clusters are associated with isolated active promoters, regardless of the gene's cell-type specificity. As the number of nearby active promoters increases, the number of enhancers decreases. At regions where multiple active genes are closely located, there are few distant enhancers. With Hi-C analysis, we demonstrate that the interactions among the regulatory elements (active promoters and enhancers) occur predominantly in clusters and multiway among linearly close elements and the distance between adjacent elements shows a preference of ∼30 kb. We propose a simple rule of spatial organization of active promoters and enhancers: Gene transcriptions and regulations mainly occur at local active transcription hubs contributed dynamically by multiple elements from linearly close enhancers and/or active promoters. The hub model can be represented with a flower-shaped structure and implies an enhancer-like role of active promoters.
    Enhancer RNAs
    Transcription
    Citations (44)