miRNA-Mediated RNAa by Targeting Enhancers
18
Citation
41
Reference
10
Related Paper
Citation Trend
Keywords:
Enhancer RNAs
Genomic enhancer elements regulate gene expression programs important for neuronal fate and function and are implicated in brain disease states. Enhancers undergo bidirectional transcription to generate non-coding enhancer RNAs (eRNAs). However, eRNA function remains controversial. Here, we combined ATAC-Seq and RNA-Seq datasets from three distinct neuronal culture systems in two activity states, enabling genome-wide enhancer identification and prediction of putative enhancer-gene pairs based on correlation of transcriptional output. Notably, stimulus-dependent enhancer transcription preceded mRNA induction, and CRISPR- based activation of eRNA synthesis increased mRNA at paired genes, functionally validating enhancer-gene predictions. Focusing on enhancers surrounding the Fos gene, we report that targeted eRNA manipulation bidirectionally modulates Fos mRNA, and that Fos eRNAs directly interact with the histone acetyltransferase domain of the enhancer-linked transcriptional co-activator CBP. Together, these results highlight the unique role of eRNAs in neuronal gene regulation and demonstrate that eRNAs can be used to identify putative target genes.
Enhancer RNAs
Enhancer trap
RNA polymerase II
Cite
Citations (7)
The HS2 enhancer in the beta-globin locus control region regulates transcription of the globin genes 10-50 kb away. How the HS2 enhancer acts over this distance is not clearly understood. Earlier studies show that in erythroid cells the HS2 enhancer initiates synthesis of intergenic RNAs from sites within and downstream of the enhancer, and the enhancer-initiated RNAs are transcribed through the intervening DNA into the cis-linked promoter and gene. To investigate the functional significance of the enhancer-initiated transcription, here we inserted the lac operator sequence in the intervening DNA between the HS2 enhancer and the epsilon-globin promoter in reporter plasmids and integrated the plasmids into erythroid K562 cells expressing the lac repressor protein. We found that the interposed lac operator/repressor complex blocked the elongation of enhancer-initiated transcription through the intervening DNA and drastically reduced HS2 enhancer function as measured by the level of mRNA synthesized from the epsilon-globin promoter. The results indicate that the tracking and transcription mechanism of the HS2 enhancer-assembled transcriptional machinery from the enhancer through the intervening DNA into the cis-linked promoter can mediate enhancer-promoter interaction over a long distance.
Enhancer RNAs
Enhancer trap
Locus control region
Transcription
RNA polymerase II
Lac repressor
Cite
Citations (80)
The regulation of gene expression is a fundamental cellular process and its misregulation is a key component of disease. Enhancers are one of the most salient regulatory elements in the genome and help orchestrate proper spatiotemporal gene expression during development, in homeostasis, and in response to signaling. Notably, molecular aberrations at enhancers, such as translocations and single nucleotide polymorphisms, are emerging as an important source of human variation and susceptibility to disease. Herein we discuss emerging paradigms addressing how genes are regulated by enhancers, common features of active enhancers, and how non-coding enhancer RNAs (eRNAs) can direct gene expression programs that underlie cellular phenotypes. We survey the current evidence, which suggests that eRNAs can bind to transcription factors, mediate enhancer-promoter interactions, influence RNA Pol II elongation, and act as decoys for repressive cofactors. Furthermore, we discuss current methodologies for the identification of eRNAs and novel approaches to elucidate their functions.
Enhancer RNAs
Cite
Citations (58)
Enhancer RNAs
Cite
Citations (18)
Enhancer elements regulate the tissue- and developmental-stage-specific expression of genes. Recent estimates suggest that there are more than 50,000 enhancers in mammalian cells. At least a subset of enhancers has been shown to recruit RNA polymerase II transcription complexes and to generate enhancer transcripts. Here, we provide an overview of enhancer function and discuss how transcription of enhancers or enhancer-generated transcripts could contribute to the regulation of gene expression during development and differentiation.
Enhancer RNAs
Transcription
RNA polymerase II
Cite
Citations (8)
Enhancers are intergenic DNA elements that regulate the transcription of target genes in response to signaling pathways by interacting with promoters over large genomic distances. Recent studies have revealed that enhancers are bi-directionally transcribed into enhancer RNAs (eRNAs). Using single-molecule fluorescence in situ hybridization (smFISH), we investigated the eRNA-mediated regulation of transcription during estrogen induction in MCF-7 cells. We demonstrate that eRNAs are localized exclusively in the nucleus and are induced with similar kinetics as target mRNAs. However, eRNAs are mostly nascent at enhancers and their steady-state levels remain lower than those of their cognate mRNAs. Surprisingly, at the single-allele level, eRNAs are rarely co-expressed with their target loci, demonstrating that active gene transcription does not require the continuous transcription of eRNAs or their accumulation at enhancers. When co-expressed, sub-diffraction distance measurements between nascent mRNA and eRNA signals reveal that co-transcription of eRNAs and mRNAs rarely occurs within closed enhancer-promoter loops. Lastly, basal eRNA transcription at enhancers, but not E2-induced transcription, is maintained upon depletion of MLL1 and ERα, suggesting some degree of chromatin accessibility prior to signal-dependent activation of transcription. Together, our findings suggest that eRNA accumulation at enhancer-promoter loops is not required to sustain target gene transcription.
Enhancer RNAs
Transcription
RNA polymerase II
Cite
Citations (50)
Enhancer RNAs
J chain
STAT5
Immunoglobulin heavy chain
Cite
Citations (40)
Active enhancers are frequently transcribed, yet the regulatory role of enhancer transcription remains debated. Here, we depleted the RNA polymerase II pausing and elongation factor Spt5 in activated mouse B cells and found that approximately 50% of enhancer-gene pairs showed co-regulated transcription, consistent with a potential functional requirement for enhancer transcription. In particular, Spt5 depletion led to loss of super-enhancer-promoter physical interaction and gene expression at the immunoglobulin heavy-chain locus (Igh), abrogating antibody class switch recombination. This defect correlated strictly with loss of enhancer transcription but did not affect acetylation of histone H3 at lysine 27, chromatin accessibility and occupancy of Mediator and cohesin at the enhancer. Strikingly, CRISPRa-mediated rescue of enhancer transcription in Spt5-depleted cells restored Igh gene expression. Our work suggests that Spt5-mediated enhancer transcription underlies the physical and functional interaction between a subset of active enhancers and their target promoters. PMID: 32251373
Enhancer RNAs
RNA polymerase II
Transcription
Locus control region
Upstream activating sequence
Cite
Citations (0)
Abstract Genomic enhancer elements regulate gene expression programs important for neuronal fate and function and are implicated in brain disease states. Enhancers undergo bidirectional transcription to generate non-coding enhancer RNAs (eRNAs). However, eRNA function remains controversial. Here, we combined Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq) and RNA-Seq datasets from three distinct neuronal culture systems in two activity states, enabling genome-wide enhancer identification and prediction of putative enhancer–gene pairs based on correlation of transcriptional output. Notably, stimulus-dependent enhancer transcription preceded mRNA induction, and CRISPR-based activation of eRNA synthesis increased mRNA at paired genes, functionally validating enhancer–gene predictions. Focusing on enhancers surrounding the Fos gene, we report that targeted eRNA manipulation bidirectionally modulates Fos mRNA, and that Fos eRNAs directly interact with the histone acetyltransferase domain of the enhancer-linked transcriptional co-activator CREB-binding protein (CBP). Together, these results highlight the unique role of eRNAs in neuronal gene regulation and demonstrate that eRNAs can be used to identify putative target genes.
Enhancer RNAs
RNA polymerase II
Enhancer trap
Cite
Citations (81)
Enhancer RNAs
Chromatin immunoprecipitation
Cite
Citations (614)