Rtools: a web server for various secondary structural analyses on single RNA sequences
22
Citation
24
Reference
10
Related Paper
Citation Trend
Abstract:
The secondary structures, as well as the nucleotide sequences, are the important features of RNA molecules to characterize their functions. According to the thermodynamic model, however, the probability of any secondary structure is very small. As a consequence, any tool to predict the secondary structures of RNAs has limited accuracy. On the other hand, there are a few tools to compensate the imperfect predictions by calculating and visualizing the secondary structural information from RNA sequences. It is desirable to obtain the rich information from those tools through a friendly interface. We implemented a web server of the tools to predict secondary structures and to calculate various structural features based on the energy models of secondary structures. By just giving an RNA sequence to the web server, the user can get the different types of solutions of the secondary structures, the marginal probabilities such as base-paring probabilities, loop probabilities and accessibilities of the local bases, the energy changes by arbitrary base mutations as well as the measures for validations of the predicted secondary structures. The web server is available at http://rtools.cbrc.jp, which integrates software tools, CentroidFold, CentroidHomfold, IPKnot, CapR, Raccess, Rchange and RintD.Keywords:
Base (topology)
Sequence (biology)
Interface (matter)
Dynamic programming algorithms that predict RNA secondary structure by minimizing the free energy have had one important limitation. They were able to predict only one optimal structure. Given the uncertainties of the thermodynamic data and the effects of proteins and other environmental factors on structure, the optimal structure predicted by these methods may not have biological significance. We present a dynamic programming algorithm that can determine optimal and suboptimal secondary structures for an RNA. The power and utility of the method is demonstrated in the folding of the intervening sequence of the rRNA of Tetrahymena . By first identifying the major secondary structures corresponding to the lowest free energy minima, a secondary structure of possible biological significance is derived.
Maxima and minima
Sequence (biology)
Folding (DSP implementation)
Nucleic acid structure
Cite
Citations (80)
The crystal structure based model of the catalytic center of Ago2 revealed that the siRNA and the mRNA must be able to form an A-helix for correct positing of the scissile phosphate bond for cleavage in RNAi. This suggests that base pairing of the target mRNA with itself, i.e. secondary structure, must be removed before cleavage. Early on in the siRNA design, GC-rich target sites were avoided because of their potential to be involved in strong secondary structure. It is still unclear how important a factor mRNA secondary structure is in RNAi. However, it has been established that a difference in the thermostability of the ends of an siRNA duplex dictate which strand is loaded into the RNA-induced silencing complex. Here, we use a novel secondary structure prediction method and duplex-end differential calculations to investigate the importance of a secondary structure in the siRNA design. We found that the differential duplex-end stabilities alone account for functional prediction of 60% of the 80 siRNA sites examined, and that secondary structure predictions improve the prediction of site efficacy. A total of 80% of the non-functional sites can be eliminated using secondary structure predictions and duplex-end differential.
Duplex (building)
Cleavage (geology)
Thermostability
Stem-loop
Cite
Citations (177)
The secondary structures, as well as the nucleotide sequences, are the important features of RNA molecules to characterize their functions. According to the thermodynamic model, however, the probability of any secondary structure is very small. As a consequence, any tool to predict the secondary structures of RNAs has limited accuracy. On the other hand, there are a few tools to compensate the imperfect predictions by calculating and visualizing the secondary structural information from RNA sequences. It is desirable to obtain the rich information from those tools through a friendly interface. We implemented a web server of the tools to predict secondary structures and to calculate various structural features based on the energy models of secondary structures. By just giving an RNA sequence to the web server, the user can get the different types of solutions of the secondary structures, the marginal probabilities such as base-paring probabilities, loop probabilities and accessibilities of the local bases, the energy changes by arbitrary base mutations as well as the measures for validations of the predicted secondary structures. The web server is available at http://rtools.cbrc.jp, which integrates software tools, CentroidFold, CentroidHomfold, IPKnot, CapR, Raccess, Rchange and RintD.
Base (topology)
Sequence (biology)
Interface (matter)
Cite
Citations (22)
We report a method for predicting the most stable secondary structure of RNA from its primary sequence of nucleotides. The technique consists of a series of three computer programs interfaced to take the nucleotide sequence of any RNA and (a) list all possible helical regions, using modified Watson-Crick base-pairing rules; (b) create all possible secondary structures by forming permutations of compatible helical regions; and (c)evaluate each structure for total free energy of formation from a completely extended chain. A free energy distribution and the base-by-base bonding interactions of each possible structure are catalogued by the system and are readily available for examination. The method has been applied to 62 tRNA sequences. The total free-energy of the predicted most stable structures ranged from -19 to -41 kcal/mole (-22 to -49 kJ/mole). The number of structures created was also highly sequence-dependent and ranged from 200 to 13,000. In nearly all cases the cloverleaf is predicted to be the structure with the lowest free energy of formation.
Sequence (biology)
Base (topology)
Cite
Citations (123)
Prediction of RNA secondary structure is important in the functional analysis of RNA molecules. The RDfolder web server described in this paper provides two methods for prediction of RNA secondary structure: random stacking of helical regions and helical regions distribution. The random stacking method predicts secondary structure by Monte Carlo simulations. The method of helical regions distribution predicts secondary structure based on the helices that appear most frequently in the set of structures, which are generated by the random stacking method. The RDfolder web server can be accessed at http://rna.cbi.pku.edu.cn.
Nucleic acid structure
Cite
Citations (14)
Background Non-coding RNAs perform a wide range of functions inside the living cells that are related to their structures. Several algorithms have been proposed to predict RNA secondary structure based on minimum free energy. Low prediction accuracy of these algorithms indicates that free energy alone is not sufficient to predict the functional secondary structure. Recently, the obtained information from the SHAPE experiment greatly improves the accuracy of RNA secondary structure prediction by adding this information to the thermodynamic free energy as pseudo-free energy. Method In this paper, a new method is proposed to predict RNA secondary structure based on both free energy and SHAPE pseudo-free energy. For each RNA sequence, a population of secondary structures is constructed and their SHAPE data are simulated. Then, an evolutionary algorithm is used to improve each structure based on both free and pseudo-free energies. Finally, a structure with minimum summation of free and pseudo-free energies is considered as the predicted RNA secondary structure. Results and Conclusions Computationally simulating the SHAPE data for a given RNA sequence requires its secondary structure. Here, we overcome this limitation by employing a population of secondary structures. This helps us to simulate the SHAPE data for any RNA sequence and consequently improves the accuracy of RNA secondary structure prediction as it is confirmed by our experiments. The source code and web server of our proposed method are freely available at http://mostafa.ut.ac.ir/ESD-Fold/.
Thermodynamic free energy
Nucleic acid structure
Sequence (biology)
Cite
Citations (6)
Nucleic acid structure
Base (topology)
Cite
Citations (1)
Secondary structure prediction of RNA sequences is an important problem. There have been progresses in this area, but the accuracy of prediction from an RNA sequence is still limited. In many cases, however, homologous RNA sequences are available with the target RNA sequence whose secondary structure is to be predicted.In this article, we propose a new method for secondary structure predictions of individual RNA sequences by taking the information of their homologous sequences into account without assuming the common secondary structure of the entire sequences. The proposed method is based on posterior decoding techniques, which consider all the suboptimal secondary structures of the target and homologous sequences and all the suboptimal alignments between the target sequence and each of the homologous sequences. In our computational experiments, the proposed method provides better predictions than those performed only on the basis of the formation of individual RNA sequences and those performed by using methods for predicting the common secondary structure of the homologous sequences. Remarkably, we found that the common secondary predictions sometimes give worse predictions for the secondary structure of a target sequence than the predictions from the individual target sequence, while the proposed method always gives good predictions for the secondary structure of target sequences in all tested cases.Supporting information and software are available online at: http://www.ncrna.org/software/centroidfold/ismb2009/.Supplementary data are available at Bioinformatics online.
Sequence (biology)
Nucleic acid structure
Protein superfamily
Cite
Citations (49)
RNAstructure is a software package for RNA secondary structure prediction and analysis. This contribution describes a new set of web servers to provide its functionality. The web server offers RNA secondary structure prediction, including free energy minimization, maximum expected accuracy structure prediction and pseudoknot prediction. Bimolecular secondary structure prediction is also provided. Additionally, the server can predict secondary structures conserved in either two homologs or more than two homologs. Folding free energy changes can be predicted for a given RNA structure using nearest neighbor rules. Secondary structures can be compared using circular plots or the scoring methods, sensitivity and positive predictive value. Additionally, structure drawings can be rendered as SVG, postscript, jpeg or pdf. The web server is freely available for public use at: http://rna.urmc.rochester.edu/RNAstructureWeb.
Pseudoknot
Nucleic acid structure
Cite
Citations (385)
While predicting the secondary structure of RNA is vital for researching its function, determining RNA secondary structure is challenging, especially for that with pseudoknots. Typically, several excellent computational methods can be utilized to predict the secondary structure (with or without pseudoknots), but they have their own merits and demerits. These methods can be classified into two categories: the multi-sequence method and the single-sequence method. The main advantage of the multi-sequence method lies in its use of the auxiliary sequences to assist in predicting the secondary structure, but it can only successfully predict in the presence of multiple highly homologous sequences. The single-sequence method is associated with the major merit of easy operation (only need the target sequence to predict secondary structure), but its folding parameters are the common features of diversity RNA, which cannot describe the unique characteristics of RNA, thus potentially resulting in the low prediction accuracy in some RNA. In this paper, 'DMfold', a method based on the Deep Learning and Improved Base Pair Maximization Principle, is proposed to predict the secondary structure with pseudoknots, which fully absorbs the advantages and avoids some disadvantages of those two methods. Notably, DMfold could predict the secondary structure of RNA by learning similar RNA in the known structures, which uses the similar RNA sequences instead of the highly homogeneous sequences in the multi-sequence method, thereby reducing the requirement for auxiliary sequences. In DMfold, it only needs to input the target sequence to predict the secondary structure. Its folding parameters are fully extracted automatically by deep learning, which could avoid the lack of folding parameters in the single-sequence method. Experiments show that our method is not only simple to operate, but also improves the prediction accuracy compared to multiple excellent prediction methods. A repository containing our code can be found at https://github.com/linyuwangPHD/RNA-Secondary-Structure-Database.
Maximization
Base (topology)
Nucleic acid structure
Pseudoknot
Cite
Citations (98)