Method for predicting RNA secondary structure.
123
Citation
20
Reference
10
Related Paper
Citation Trend
Abstract:
We report a method for predicting the most stable secondary structure of RNA from its primary sequence of nucleotides. The technique consists of a series of three computer programs interfaced to take the nucleotide sequence of any RNA and (a) list all possible helical regions, using modified Watson-Crick base-pairing rules; (b) create all possible secondary structures by forming permutations of compatible helical regions; and (c)evaluate each structure for total free energy of formation from a completely extended chain. A free energy distribution and the base-by-base bonding interactions of each possible structure are catalogued by the system and are readily available for examination. The method has been applied to 62 tRNA sequences. The total free-energy of the predicted most stable structures ranged from -19 to -41 kcal/mole (-22 to -49 kJ/mole). The number of structures created was also highly sequence-dependent and ranged from 200 to 13,000. In nearly all cases the cloverleaf is predicted to be the structure with the lowest free energy of formation.Keywords:
Sequence (biology)
Base (topology)
Abstract We have synthesized two RNA fragments: a 42-mer corresponding to the full loop I sequence of the loop I region of ColE1 antisense RNA (RNA I), plus three additional Gs at the 5′-end, and a 31-mer which has 11 5′-end nucleotides (G(-2)-U9) deleted. The secondary structure of the 42-mer, deduced from one- and two-dimensional NMR spectra, consists of a stem of 11 base-pairs which contains a U-U base-pair and a bulged C base, a 7 nucleotide loop, and a single-stranded 5′ end of 12 nucleotides. The UV-melting study of the 42-mer further revealed a multi-step melting behavior with transition temperatures 32°C and 71°C clearly discernible. In conjunction with NMR melting study the major transition at 71°C is assigned to the overall melting of the stem region and the 32°C transition is assigned to the opening of the loop region. The deduced secondary structure agrees with that proposed for the intact RNA I and provides structural bases for understanding the specificity of RNase E.
ColE1
Stem-loop
Cite
Citations (1)
Helix (gastropod)
Nucleic acid structure
Biomolecular Structure
Cite
Citations (0)
A method has been developed for predicting the tertiary structures of RNA-RNA complex structures using secondary structure information and a fragment assembly algorithm. The linker base pair and secondary structure potential derived from the secondary structure information are particularly useful for prediction. Application of this method to several kinds of RNA-RNA complex structures, including kissing loops, hammerhead ribozymes, and other functional RNAs, produced promising results. Use of the secondary structure potential effectively restrained the conformational search space, leading to successful prediction of kissing loop structures, which mainly consist of common structural elements. The failure to predict more difficult targets had various causes but should be overcome through such measures as tuning the balance of the energy contributions from the Watson-Crick and non- Watson-Crick base pairs, by obtaining knowledge about a wider variety of RNA structures.
Nucleic acid structure
Protein tertiary structure
Cite
Citations (7)
Secondary structure prediction of RNA molecules is a problem in Bioinformatics with several well established solutions. However, while the approaches to RNA secondary structure prediction are successful in describing RNA molecules in vitro, RNA molecules in vivo often assume their secondary structure while interacting with many other consitutents of the cell. One of those constitutents that have the ability to significantly alter RNA secondary structure formation are proteins which bind single-stranded nucleic acids, such as the nucleocapsid protein in HIV or the RecA DNA repair protein in bacteria. We extend established secondary structure prediction methods to explicitly include the effect of such interactions. Using our model we are able to predict the probability of proteins binding at any position in the nucleic acid sequence as well as the impact of the protein on nucleic acid base pairing and on the end-to-end distance distribution of the nucleic acid.
Nucleic acid structure
Cite
Citations (0)
The solution structure of the DNA analogue of the unusually stable r[C(UUCG)G] RNA hairpin, 5'-d[GGA-C(TTCG)GTCC]-3', has been determined by NMR spectroscopy, and its structure has been compared to that of the RNA molecule. The RNA molecule is compact and rigid with a highly structured loop. However, the DNA molecule is much less structured. The DNA hairpin contains a B-form stem of four base pairs. The terminal base pair frays, and the 3'-terminal nucleotides, C11 and C12, are in equilibrium between 2'-endo and 3'-endo conformations. Unlike the RNA loop, the DNA loop contains no syn nucleotides, and there is no evidence for base-base or base-phosphate hydrogen bonding in the loop. The loop is flexible, and reveals no specific internucleotide interactions.
Nucleic Acid Denaturation
Cite
Citations (35)
Folding (DSP implementation)
Protein tertiary structure
Nucleic acid structure
Cite
Citations (4)
Abstract tRNAs are L-shaped RNA molecules of ~ 80 nucleotides that are responsible for decoding the mRNA and for the incorporation of the correct amino acid into the growing peptidyl-chain at the ribosome. They occur in all kingdoms of life and both their functions, and their structure are highly conserved. The L-shaped tertiary structure is based on a cloverleaf-like secondary structure that consists of four base paired stems connected by three to four loops. The anticodon base triplet, which is complementary to the sequence of the mRNA, resides in the anticodon loop whereas the amino acid is attached to the sequence CCA at the 3′-terminus of the molecule. tRNAs exhibit very stable secondary and tertiary structures and contain up to 10% modified nucleotides. However, their structure and function can also be maintained in the absence of nucleotide modifications. Here, we present the assignments of nucleobase resonances of the non-modified 77 nt tRNA Ile from the gram-negative bacterium Escherichia coli . We obtained assignments for all imino resonances visible in the spectra of the tRNA as well as for additional exchangeable and non-exchangeable protons and for heteronuclei of the nucleobases. Based on these assignments we could determine the chemical shift differences between modified and non-modified tRNA Ile as a first step towards the analysis of the effect of nucleotide modifications on tRNA’s structure and dynamics.
Nucleobase
Protein tertiary structure
Cite
Citations (1)
Determining RNA secondary structure is important for understanding structure-function relationships and identifying potential drug targets. This paper reports the use of microarrays with heptamer 2'-O-methyl oligoribonucleotides to probe the secondary structure of an RNA and thereby improve the prediction of that secondary structure. When experimental constraints from hybridization results are added to a free-energy minimization algorithm, the prediction of the secondary structure of Escherichia coli 5S rRNA improves from 27 to 92% of the known canonical base pairs. Optimization of buffer conditions for hybridization and application of 2'-O-methyl-2-thiouridine to enhance binding and improve discrimination between AU and GU pairs are also described. The results suggest that probing RNA with oligonucleotide microarrays can facilitate determination of secondary structure.
Nucleic acid structure
Cite
Citations (42)
The initiation of reverse transcription of a retrovlral RNA genome occurs by a tRNA primer bound near the 5′ end of the genomlc RNA at a position called the primer-binding site (PBS). To understand the molecular basis for this RNA-RNA interaction, the secondary structure of the leader RNA of the human immunodeficiency virus type 2 (HIV-2) RNA was analyzed. in vitro synthesized HIV-2 RNA was probed with various structure-specific enzymes and chemicals. A computer program was then used to predict the secondary structure consistent with these data. In addition, the nucleotide sequences of different HIV-2 Isolates were used to screen for the occurrence of covariation among putative base pairs. The primary sequences have diverged rapidly in some HIV-2 isolates, however, some strikingly conserved secondary structure elements were identified. Most nucleotides in the leader region are involved in base pairing. An exception is the PBS sequence, of which 15 out of 18 nucleotides are exposed in an internal loop. These findings suggest that the overall structure of the HIV-2 genome has evolved to facilitate an optimal interaction with its tRNA primer.
Primer binding site
Primer (cosmetics)
Cite
Citations (73)