Stem cell factor and interleukin-3 induce stepwise generation of erythroid precursor cells from a basic fibroblast growth factor-dependent hematopoietic stem cell line, A-6.

2001 
Abstract A multipotent immature myeloid cell population was produced from a basic fibroblast growth factor (bFGF)-dependent hematopoietic stem cell line, A-6, when cultured with stem cell factor (SCF) replacing bFGF. Those cells were positive for stem cell markers, c-kit and CD34, and a myeloid cell marker, F4/80. Some cell fractions were also positive for Mac-1, a macrophage marker or Gr-1, a granulocytic maker, but negative for an erythroid marker TER119. They also showed the expression of mRNA for the myeloid-specific PU.1 but did not that for the erythroid-specific GATA-1. Among various cytokines, interleukin-3 (IL-3) induced erythroid precursor cells that expressed the erythroid-specific GATA-1 and β-major globin. The quantitative analysis showed that erythroid precursor cells were newly produced from the immature myeloid cells by cultivation with IL-3. SCF and IL-3 induced stepwise generation of erythroid precursor cells from an A-6 hematopoietic stem cell line.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    2
    Citations
    NaN
    KQI
    []