Stem cells are cells that can differentiate into other types of cells, and can also divide in self-renewal to produce more of the same type of stem cells.Mouse embryonic stem cells with fluorescent markerHuman embryonic stem cell colony on mouse embryonic fibroblast feeder layer Stem cells are cells that can differentiate into other types of cells, and can also divide in self-renewal to produce more of the same type of stem cells. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts in early embryonic development, and adult stem cells, which are found in various tissues of fully developed mammals. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues. In a developing embryo, stem cells can differentiate into all the specialized cells—ectoderm, endoderm and mesoderm (see induced pluripotent stem cells)—but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues. There are three known accessible sources of autologous adult stem cells in humans:bone marrow, adipose tissue, and blood. Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell therapy types, autologous harvesting involves the least risk. Adult stem cells are frequently used in various medical therapies (e.g., bone marrow transplantation). Stem cells can now be artificially grown and transformed (differentiated) into specialized cell types with characteristics consistent with cells of various tissues such as muscles or nerves. Embryonic cell lines and autologous embryonic stem cells generated through somatic cell nuclear transfer or dedifferentiation have also been proposed as promising candidates for future therapies. Research into stem cells grew out of findings by Ernest A. McCulloch and James E. Till at the University of Toronto in the 1960s.