Particle-in-cell/Monte Carlo collision simulation of the ionization process of surface-wave plasma discharges resonantly excited by surface plasmon polaritons

2013 
Although surface-wave plasma (SWP) sources have many industrial applications, the ionization process for SWP discharges is not yet well understood. The resonant excitation of surface plasmon polaritons (SPPs) has recently been proposed to produce SWP efficiently, and this work presents a numerical study of the mechanism to produce SWP sources. Specifically, SWP resonantly excited by SPPs at low pressure (0.25 Torr) are modeled using a two-dimensional in the working space and three-dimensional in the velocity space particle-in-cell with the Monte Carlo collision method. Simulation results are sampled at different time steps, in which the detailed information about the distribution of electrons and electromagnetic fields is obtained. Results show that the mode conversion between surface waves of SPPs and electron plasma waves (EPWs) occurs efficiently at the location where the plasma density is higher than 3.57 × 1017 m−3. Due to the effect of the locally enhanced electric field of SPPs, the mode conversion...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    16
    Citations
    NaN
    KQI
    []