Surface plasmon polaritons (SPPs) are infrared or visible-frequency electromagnetic waves that travel along a metal–dielectric or metal–air interface. The term 'surface plasmon polariton' explains that the wave involves both charge motion in the metal ('surface plasmon') and electromagnetic waves in the air or dielectric ('polariton').The electric field (E-field) of an SPP at the silver-air interface, at the frequency where the free-space wavelength is 370 nm. The animation shows how the E-field varies over an optical cycle. The permittivity of silver at this frequency is (−2.6 + 0.6i). The picture is (0.3 × 370 nm) across horizontally; the SPP wavelength is much smaller than the free-space wavelength.The E-field of an SPP at the silver-air interface, at a much lower frequency corresponding to a free-space wavelength of 10μm. At this frequency, the silver behaves approximately as a perfect electric conductor, and the SPP is called a Sommerfeld–Zenneck wave, with almost the same wavelength as the free-space wavelength. The permittivity of silver at this frequency is (−2700 + 1400i). The picture is 6 μm across horizontally. Surface plasmon polaritons (SPPs) are infrared or visible-frequency electromagnetic waves that travel along a metal–dielectric or metal–air interface. The term 'surface plasmon polariton' explains that the wave involves both charge motion in the metal ('surface plasmon') and electromagnetic waves in the air or dielectric ('polariton'). They are a type of surface wave, guided along the interface in much the same way that light can be guided by an optical fiber. SPPs are shorter in wavelength than the incident light (photons). Hence, SPPs can have tighter spatial confinement and higher local field intensity. Perpendicular to the interface, they have subwavelength-scale confinement. An SPP will propagate along the interface until its energy is lost either to absorption in the metal or scattering into other directions (such as into free space). Application of SPPs enables subwavelength optics in microscopy and lithography beyond the diffraction limit. It also enables the first steady-state micro-mechanical measurement of a fundamental property of light itself: the momentum of a photon in a dielectric medium. Other applications are photonic data storage, light generation, and bio-photonics. SPPs can be excited by both electrons and photons. Excitation by electrons is created by firing electrons into the bulk of a metal. As the electrons scatter, energy is transferred into the bulk plasma. The component of the scattering vector parallel to the surface results in the formation of a surface plasmon polariton. For a photon to excite an SPP, both must have the same frequency and momentum. However, for a given frequency, a free-space photon has less momentum than an SPP because the two have different dispersion relations (see below). This momentum mismatch is the reason that a free-space photon from air cannot couple directly to an SPP. For the same reason, an SPP on a smooth metal surface cannot emit energy as a free-space photon into the dielectric (if the dielectric is uniform). This incompatibility is analogous to the lack of transmission that occurs during total internal reflection. Nevertheless, coupling of photons into SPPs can be achieved using a coupling medium such as a prism or grating to match the photon and SPP wave vectors (and thus match their momenta). A prism can be positioned against a thin metal film in the Kretschmann configuration or very close to a metal surface in the Otto configuration (Figure 1). A grating coupler matches the wave vectors by increasing the parallel wave vector component by an amount related to the grating period (Figure 2). This method, while less frequently utilized, is critical to the theoretical understanding of the effect of surface roughness. Moreover, simple isolated surface defects such as a groove, a slit or a corrugation on an otherwise planar surface provides a mechanism by which free-space radiation and SPs can exchange energy and hence couple. The properties of an SPP can be derived from Maxwell's equations. We use a coordinate system where the metal–dielectric interface is the z = 0 {displaystyle z=0} plane, with the metal at z < 0 {displaystyle z<0} and dielectric at z > 0 {displaystyle z>0} . The electric and magnetic fields as a function of position ( x , y , z ) {displaystyle (x,y,z)} and time t are as follows: