language-icon Old Web
English
Sign In

Plasmon

In physics, a plasmon is a quantum of plasma oscillation. Just as light (an optical oscillation) consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective (a discrete number) oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton. In physics, a plasmon is a quantum of plasma oscillation. Just as light (an optical oscillation) consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective (a discrete number) oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton. The plasmon was initially proposed in 1952 by David Pines and David Bohm and was shown to arise from a Hamiltonian for the long-range electron-electron correlations. Since plasmons are the quantization of classical plasma oscillations, most of their properties can be derived directly from Maxwell's equations. Plasmons can be described in the classical picture as an oscillation of electron density with respect to the fixed positive ions in a metal. To visualize a plasma oscillation, imagine a cube of metal placed in an external electric field pointing to the right. Electrons will move to the left side (uncovering positive ions on the right side) until they cancel the field inside the metal. If the electric field is removed, the electrons move to the right, repelled by each other and attracted to the positive ions left bare on the right side. They oscillate back and forth at the plasma frequency until the energy is lost in some kind of resistance or damping. Plasmons are a quantization of this kind of oscillation. Plasmons play a large role in the optical properties of metals and semiconductors. Light of frequencies below the plasma frequency is reflected by a material because the electrons in the material screen the electric field of the light. Light of frequencies above the plasma frequency is transmitted by a material because the electrons in the material cannot respond fast enough to screen it. In most metals, the plasma frequency is in the ultraviolet, making them shiny (reflective) in the visible range. Some metals, such as copper and gold, have electronic interband transitions in the visible range, whereby specific light energies (colors) are absorbed, yielding their distinct color. In semiconductors, the valence electron plasmon frequency is usually in the deep ultraviolet, while their electronic interband transitions are in the visible range, whereby specific light energies (colors) are absorbed, yielding their distinct color which is why they are reflective. It has been shown that the plasmon frequency may occur in the mid-infrared and near-infrared region when semiconductors are in the form of nanoparticles with heavy doping. The plasmon energy can often be estimated in the free electron model as where n {displaystyle n} is the conduction electron density, e {displaystyle e} is the elementary charge, m {displaystyle m} is the electron mass, ϵ 0 {displaystyle epsilon _{0}} the permittivity of free space, ℏ {displaystyle hbar } the reduced Planck constant and ω p {displaystyle omega _{p}} the plasmon frequency. Surface plasmons are those plasmons that are confined to surfaces and that interact strongly with light resulting in a polariton. They occur at the interface of a material exhibiting positive real part of their relative permittivity, i.e. dielectric constant, (e.g. vacuum, air, glass and other dielectrics) and a material whose real part of permittivity is negative at the given frequency of light, typically a metal or heavily doped semiconductors. In addition to opposite sign of the real part of the permittivity, the magnitude of the real part of the permittivity in the negative permittivity region should typically be larger than the magnitude of the permittivity in the positive permittivity region, otherwise the light is not bound to the surface (i.e. the surface plasmons do not exist) as shown in the famous book by Raether. At visible wavelengths of light, e.g. 632.8 nm wavelength provided by a He-Ne laser, interfaces supporting surface plasmons are often formed by metals like silver or gold (negative real part permittivity) in contact with dielectrics such as air or silicon dioxide. The particular choice of materials can have a drastic effect on the degree of light confinement and propagation distance due to losses. Surface plasmons can also exist on interfaces other than flat surfaces, such as particles, or rectangular strips, v-grooves, cylinders, and other structures. Many structures have been investigated due to the capability of surface plasmons to confine light below the diffraction limit of light. Surface plasmons can play a role in surface-enhanced Raman spectroscopy and in explaining anomalies in diffraction from metal gratings (Wood's anomaly), among other things. Surface plasmon resonance is used by biochemists to study the mechanisms and kinetics of ligands binding to receptors (i.e. a substrate binding to an enzyme). Multi-parametric surface plasmon resonance can be used not only to measure molecular interactions but also nanolayer properties or structural changes in the adsorbed molecules, polymer layers or graphene, for instance.

[ "Optoelectronics", "Quantum mechanics", "Optics", "Metal", "metal nanostructures", "gold nanorod", "quantum emitter", "Nanocircuitry", "Nanoshell" ]
Parent Topic
Child Topic
    No Parent Topic