Versatile and tunable surface plasmon polariton excitation over a broad bandwidth with a simple metaline by external polarization modulation.

2016 
Surface plasmon polariton (SPP) sources and launchers are highly demanded in various applications of nanophotonics. Here, we propose a general approach that can realize complete control of the complex extinction ratio (including amplitude and phase) of any two linearly independent SPP modes excited by any elementary SPP excitation architecture just by manipulating the incident polarization state. In an optical system, it suffices to simply tune the orientation angles of a linear polarizer and a quarter wave plate, which may greatly simplify the design and application of SPP launchers and diversify their functionalities. As an example to show the broad application prospect of this method, we design and realize a metaline consisting of Δ-shaped plasmonic nanoantennas, which can effectively realize dual functionalities, i.e., the tunable directional SPP excitation at an arbitrarily chosen wavelength and the complete unidirectional SPP excitation over a broad bandwidth. This general approach can also be extended to the control of the complex extinction ratio of any two linearly independent excited modes in many other linear optical systems, such as two modes in a waveguide or two diffraction orders in a grating, over a broad bandwidth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    5
    Citations
    NaN
    KQI
    []