Analysis and optimization of sputter deposited AlN-layers for flexural plate wave devices
2016
Aluminum nitride (AlN) thin films deposited by reactive radio frequency magnetron sputtering in an Ar/N2 discharge on Si(001) substrates were studied with respect to structure, stress, and piezoelectric properties. In order to optimize the AlN layers for flexural plate wave (FPW) devices, the influence of process pressure and N2 concentration has been evaluated by means of spectroscopic ellipsometry, residual stress measurements, x-ray diffraction, atomic and piezoresponse force microscopy, along with analysis of the piezoelectric charge coefficient d33,f. FPW devices with low compressively stressed (−200 to −300 MPa) AlN layers were prepared and characterized by white light interferometry and Raman measurements. With increasing pressure from 3×10−3 to 8×10−3 mbar, a transition from −840 MPa compressive stress to +300 MPa tensile stress was measured. Increasing the nitrogen concentration from 3.3% to 50% resulted in a change in stress from +150 to −1170 MPa. All films exhibited a high degree of c-axis ori...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
45
References
13
Citations
NaN
KQI