In physics, sputtering is a phenomenon in which microscopic particles of a solid material are ejected from its surface, after the material is itself bombarded by energetic particles of a plasma or gas. It occurs naturally in outer space, and can be an unwelcome source of wear in precision components. However, the fact that it can be made to act on extremely fine layers of material is exploited in science and industry -- there, it is used to perform precise etching, carry out analytical techniques, and deposit thin film layers in the manufacture of optical coatings, semiconductor devices and nanotechnology products. In physics, sputtering is a phenomenon in which microscopic particles of a solid material are ejected from its surface, after the material is itself bombarded by energetic particles of a plasma or gas. It occurs naturally in outer space, and can be an unwelcome source of wear in precision components. However, the fact that it can be made to act on extremely fine layers of material is exploited in science and industry -- there, it is used to perform precise etching, carry out analytical techniques, and deposit thin film layers in the manufacture of optical coatings, semiconductor devices and nanotechnology products. When energetic ions collide with atoms of a target material, an exchange of momentum takes place between them. These ions, known as 'incident ions', set off collision cascades in the target. Such cascades can take many paths; some recoil back toward the surface of the target. If a collision cascade reaches the surface of the target, and its remaining energy is greater than the target's surface binding energy, an atom will be ejected. This process is known as 'sputtering'. If the target is thin (on an atomic scale), the collision cascade can reach through to its back side; the atoms ejected in this fashion are said to escape the surface binding energy 'in transmission'. The average number of atoms ejected from the target per incident ion is called the 'sputter yield'. The sputter yield depends on several things: the angle at which ions collide with the surface of the material, how much energy they strike it with, their masses, the masses of the target atoms, and the target's surface binding energy. If the target possesses a crystal structure, the orientation of its axes with respect to the surface is an important factor. The ions that cause sputtering come from a variety of sources -- they can come from plasma, specially constructed ion sources, particle accelerators, outer space (e.g. solar wind), or radioactive materials (e.g. alpha radiation). A model for describing sputtering in the cascade regime for amorphous flat targets is Thompson's analytical model. An algorithm that simulates sputtering based on a quantum mechanical treatment including electrons stripping at high energy is implemented in the program TRIM. Another mechanism of physical sputtering is called 'heat spike sputtering'. This can occur when the solid is dense enough, and the incoming ion heavy enough, that collisions occur very close to each other. In this case, the binary collision approximation is no longer valid, and the collisional process should be understood as a many-body process. The dense collisions induce a heat spike (also called thermal spike), which essentially melts a small portion of the crystal. If that portion is close enough to its surface, large numbers of atoms may be ejected, due to liquid flowing to the surface and/or microexplosions. Heat spike sputtering is most important for heavy ions (e.g. Xe or Au or cluster ions) with energies in the keV–MeV range bombarding dense but soft metals with a low melting point (Ag, Au, Pb, etc.). The heat spike sputtering often increases nonlinearly with energy, and can for small cluster ions lead to dramatic sputtering yields per cluster of the order of 10,000. For animations of such a process see 'Re: Displacement Cascade 1' in the external links section.