Integrators on Homogeneous Spaces: Isotropy Choice and Connections

2016 
We consider numerical integrators of ODEs on homogeneous spaces (spheres, affine spaces, hyperbolic spaces). Homogeneous spaces are equipped with a built-in symmetry. A numerical integrator respects this symmetry if it is equivariant. One obtains homogeneous space integrators by combining a Lie group integrator with an isotropy choice. We show that equivariant isotropy choices combined with equivariant Lie group integrators produce equivariant homogeneous space integrators. Moreover, we show that the RKMK, Crouch---Grossman, or commutator-free methods are equivariant. To show this, we give a novel description of Lie group integrators in terms of stage trees and motion maps, which unifies the known Lie group integrators. We then proceed to study the equivariant isotropy maps of order zero, which we call connections, and show that they can be identified with reductive structures and invariant principal connections. We give concrete formulas for connections in standard homogeneous spaces of interest, such as Stiefel, Grassmannian, isospectral, and polar decomposition manifolds. Finally, we show that the space of matrices of fixed rank possesses no connection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    9
    Citations
    NaN
    KQI
    []