language-icon Old Web
English
Sign In

Equivariant map

In mathematics, equivariance is a form of symmetry for functions from one symmetric space to another. A function is said to be an equivariant map when its domain and codomain are acted on by the same symmetry group, and when the function commutes with the action of the group. That is, applying a symmetry transformation and then computing the function produces the same result as computing the function and then applying the transformation. In mathematics, equivariance is a form of symmetry for functions from one symmetric space to another. A function is said to be an equivariant map when its domain and codomain are acted on by the same symmetry group, and when the function commutes with the action of the group. That is, applying a symmetry transformation and then computing the function produces the same result as computing the function and then applying the transformation. Equivariant maps generalize the concept of invariants, functions whose value is unchanged by a symmetry transformation of their argument. The value of an equivariant map is often (imprecisely) called an invariant. In statistical inference, equivariance under statistical transformations of data is an important property of various estimation methods; see invariant estimator for details. In pure mathematics, equivariance is a central object of study in equivariant topology and its subtopics equivariant cohomology and equivariant stable homotopy theory. In the geometry of triangles, the area and perimeter of a triangle are invariants: translating or rotating a triangle does not change its area or perimeter. However, triangle centers such as the centroid, circumcenter, incenter and orthocenter are not invariant, because moving a triangle will also cause its centers to move. Instead, these centers are equivariant: applying any Euclidean congruence (a combination of a translation and rotation) to a triangle, and then constructing its center, produces the same point as constructing the center first, and then applying the same congruence to the center. More generally, all triangle centers are also equivariant under similarity transformations (combinations of translation, rotation, and scaling),and the centroid is equivariant under affine transformations. The same function may be an invariant for one group of symmetries and equivariant for a different group of symmetries. For instance, under similarity transformations instead of congruences the area and perimeter are no longer invariant: scaling a triangle also changes its area and perimeter. However, these changes happen in a predictable way: if a triangle is scaled by a factor of s, the perimeter also scales by s and the area scales by s2. In this way, the function mapping each triangle to its area or perimeter can be seen as equivariant for a multiplicative group action of the scaling transformations on the positive real numbers. Another class of simple examples comes from statistical estimation. The mean of a sample (a set of real numbers) is commonly used as a central tendency of the sample. It is equivariant under linear transformations of the real numbers, so for instance it is unaffected by the choice of units used to represent the numbers. By contrast, the mean is not equivariant with respect to nonlinear transformations such as exponentials. The median of a sample is equivariant for a much larger group of transformations, the (strictly) monotonic functions of the real numbers. This analysis indicates that the median is more robust against certain kinds of changes to a data set, and that (unlike the mean) it is meaningful for ordinal data. The concepts of an invariant estimator and equivariant estimator have been used to formalize this style of analysis. In the representation theory of finite groups, a vector space equipped with a group that acts by linear transformations of the space is called a linear representation of the group.A linear map that commutes with the action is called an intertwiner. That is, an intertwiner is just an equivariant linear map between two representations. Alternatively, an intertwiner for representations of a group G over a field K is the same thing as a module homomorphism of K-modules, where K is the group ring of G.

[ "Algebra", "Topology", "Mathematical analysis", "Pure mathematics", "Stark conjectures", "Segal conjecture", "Twisted K-theory", "Quotient stack", "Equivariant K-theory" ]
Parent Topic
Child Topic
    No Parent Topic