Applying deep-learning to a top-down SSVEP BMI
2018
Brain-machine interfaces (BMIs) enable humans to control devices by modulating their brain signals. As the current BMI technology has several obstacles to overcome, additional sources of brain activity need to be explored. It seems plausible that the brain activity associated with top-down cognitive functions could open a new prospect in the field of BMIs. As top-down cognitive BMIs could exploit neural signals from more diverse networks, a deep-learning approach with complex hidden layers may provide a more optimal decoding performance. In this study, using our top-down steady-state visual evoked potential (SSVEP) paradigm (N = 20), we observed that the decoding accuracy (48.42%) of a deep-learning algorithm with a sigmoid activation function was significantly higher than that of regularized linear discriminant analysis (rLDA) with shrinkage (42.52%; t(19) = −3.183, p < 0.01), used in our previous study. Therefore, a deep-learning approach seems to be more optimized for classification in the top-down cognitive BMI paradigm.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
12
References
5
Citations
NaN
KQI