language-icon Old Web
English
Sign In

Top-down and bottom-up design

Top-down and bottom-up are both strategies of information processing and knowledge ordering, used in a variety of fields including software, humanistic and scientific theories (see systemics), and management and organization. In practice, they can be seen as a style of thinking, teaching, or leadership. A top-down approach (also known as stepwise design and in some cases used as a synonym of decomposition) is essentially the breaking down of a system to gain insight into its compositional sub-systems in a reverse engineering fashion. In a top-down approach an overview of the system is formulated, specifying, but not detailing, any first-level subsystems. Each subsystem is then refined in yet greater detail, sometimes in many additional subsystem levels, until the entire specification is reduced to base elements. A top-down model is often specified with the assistance of 'black boxes', which makes it easier to manipulate. However, black boxes may fail to clarify elementary mechanisms or be detailed enough to realistically validate the model. Top down approach starts with the big picture. It breaks down from there into smaller segments. A bottom-up approach is the piecing together of systems to give rise to more complex systems, thus making the original systems sub-systems of the emergent system. Bottom-up processing is a type of information processing based on incoming data from the environment to form a perception. From a cognitive psychology perspective, information enters the eyes in one direction (sensory input, or the 'bottom'), and is then turned into an image by the brain that can be interpreted and recognized as a perception (output that is 'built up' from processing to final cognition). In a bottom-up approach the individual base elements of the system are first specified in great detail. These elements are then linked together to form larger subsystems, which then in turn are linked, sometimes in many levels, until a complete top-level system is formed. This strategy often resembles a 'seed' model, by which the beginnings are small but eventually grow in complexity and completeness. However, 'organic strategies' may result in a tangle of elements and subsystems, developed in isolation and subject to local optimization as opposed to meeting a global purpose. During the design and development of new products, designers and engineers rely on both a bottom-up and top-down approach. The bottom-up approach is being utilized when off-the-shelf or existing components are selected and integrated into the product. An example would include selecting a particular fastener, such as a bolt, and designing the receiving components such that the fastener will fit properly. In a top-down approach, a custom fastener would be designed such that it would fit properly in the receiving components.For perspective, for a product with more restrictive requirements (such as weight, geometry, safety, environment, etc.), such as a space-suit, a more top-down approach is taken and almost everything is custom designed. However, when it's more important to minimize cost and increase component availability, such as with manufacturing equipment, a more bottom-up approach would be taken, and as many off-the-shelf components (bolts, gears, bearings, etc.) would be selected as possible. In the latter case, the receiving housings would be designed around the selected components. In the software development process, the top-down and bottom-up approaches play a key role. Top-down approaches emphasize planning and a complete understanding of the system. It is inherent that no coding can begin until a sufficient level of detail has been reached in the design of at least some part of the system. Top-down approaches are implemented by attaching the stubs in place of the module. This, however, delays testing of the ultimate functional units of a system until significant design is complete. Bottom-up emphasizes coding and early testing, which can begin as soon as the first module has been specified. This approach, however, runs the risk that modules may be coded without having a clear idea of how they link to other parts of the system, and that such linking may not be as easy as first thought. Re-usability of code is one of the main benefits of the bottom-up approach. Top-down design was promoted in the 1970s by IBM researchers Harlan Mills and Niklaus Wirth. Mills developed structured programming concepts for practical use and tested them in a 1969 project to automate the New York Times morgue index. The engineering and management success of this project led to the spread of the top-down approach through IBM and the rest of the computer industry. Among other achievements, Niklaus Wirth, the developer of Pascal programming language, wrote the influential paper Program Development by Stepwise Refinement. Since Niklaus Wirth went on to develop languages such as Modula and Oberon (where one could define a module before knowing about the entire program specification), one can infer that top-down programming was not strictly what he promoted. Top-down methods were favored in software engineering until the late 1980s, and object-oriented programming assisted in demonstrating the idea that both aspects of top-down and bottom-up programming could be utilized.

[ "Software engineering", "Programming language", "Utility model", "top down analysis", "top down design methodology" ]
Parent Topic
Child Topic
    No Parent Topic