language-icon Old Web
English
Sign In

Evoked potential

An evoked potential or evoked response is an electrical potential in a specific pattern recorded from a specific part of the nervous system, especially the brain, of a human or other animals following presentation of a stimulus such as a light flash or a pure tone. Different types of potentials result from stimuli of different modalities and types.EP is distinct from spontaneous potentials as detected by electroencephalography (EEG), electromyography (EMG), or other electrophysiologic recording method. Such potentials are useful for electrodiagnosis and monitoring that include detections of disease and drug-related sensory dysfunction and intraoperative monitoring of sensory pathway integrity. An evoked potential or evoked response is an electrical potential in a specific pattern recorded from a specific part of the nervous system, especially the brain, of a human or other animals following presentation of a stimulus such as a light flash or a pure tone. Different types of potentials result from stimuli of different modalities and types.EP is distinct from spontaneous potentials as detected by electroencephalography (EEG), electromyography (EMG), or other electrophysiologic recording method. Such potentials are useful for electrodiagnosis and monitoring that include detections of disease and drug-related sensory dysfunction and intraoperative monitoring of sensory pathway integrity. Evoked potential amplitudes tend to be low, ranging from less than a microvolt to several microvolts, compared to tens of microvolts for EEG, millivolts for EMG, and often close to 20 millivolts for ECG. To resolve these low-amplitude potentials against the background of ongoing EEG, ECG, EMG, and other biological signals and ambient noise, signal averaging is usually required. The signal is time-locked to the stimulus and most of the noise occurs randomly, allowing the noise to be averaged out with averaging of repeated responses. Signals can be recorded from cerebral cortex, brain stem, spinal cord and peripheral nerves. Usually the term 'evoked potential' is reserved for responses involving either recording from, or stimulation of, central nervous system structures. Thus evoked compound motor action potentials (CMAP) or sensory nerve action potentials (SNAP) as used in nerve conduction studies (NCS) are generally not thought of as evoked potentials, though they do meet the above definition. Evoked potential is different from event-related potential (ERP), although the terms are sometimes used synonymously, because ERP has higher latency, and is associated with higher cognitive processing. Sensory evoked potentials (SEP) are recorded from the central nervous system following stimulation of sense organs, for example, visual evoked potentials elicited by a flashing light or changing pattern on a monitor, auditory evoked potentials by a click or tone stimulus presented through earphones), or tactile or somatosensory evoked potential (SSEP) elicited by tactile or electrical stimulation of a sensory or mixed nerve in the periphery. Sensory evoked potentials have been widely used in clinical diagnostic medicine since the 1970s, and also in intraoperative neurophysiology monitoring (IONM), also known as surgical neurophysiology. There are three kinds of evoked potentials in widespread clinical use: auditory evoked potentials, usually recorded from the scalp but originating at brainstem level; visual evoked potentials, and somatosensory evoked potentials, which are elicited by electrical stimulation of peripheral nerve. Examples of SEP usage include: Long and Allen were the first investigators to report the abnormal brainstem auditory evoked potentials (BAEPs) in an alcoholic woman who recovered from acquired central hypoventilation syndrome. These investigators hypothesized that their patient's brainstem was poisoned, but not destroyed, by her chronic alcoholism. An evoked potential is the electrical response of the brain to a sensory stimulus. Regan constructed an analogue Fourier series analyzer to record harmonics of the evoked potential to flickering (sinusoidally modulated) light. Rather than integrating the sine and cosine products, Regan fed the signals to a two-pen recorder via lowpass filters. This allowed him to demonstrate that the brain attained a steady-state regime in which the amplitude and phase of the harmonics (frequency components) of the response were approximately constant over time. By analogy with the steady-state response of a resonant circuit that follows the initial transient response he defined an idealized steady-state evoked potential (SSEP) as a form of response to repetitive sensory stimulation in which the constituent frequency components of the response remain constant with time in both amplitude and phase. Although this definition implies a series of identical temporal waveforms, it is more helpful to define the SSEP in terms of the frequency components that are an alternative description of the time-domain waveform, because different frequency components can have quite different properties. For example, the properties of the high-frequency flicker SSEP (whose peak amplitude is near 40–50 Hz) correspond to the properties of the subsequently discovered magnocellular neurons in the retina of the macaque monkey, while the properties of the medium-frequency flicker SSEP ( whose amplitude peak is near 15–20 Hz) correspond to the properties of parvocellular neurons. Since a SSEP can be completely described in terms of the amplitude and phase of each frequency component it can be quantified more unequivocally than an averaged transient evoked potential. It is sometimes said that SSEPs are elicited only by stimuli of high repetition frequency, but this is not generally correct. In principle, a sinusoidally modulated stimulus can elicit a SSEP even when its repetition frequency is low. Because of the high-frequency rolloff of the SSEP, high frequency stimulation can produce a near-sinusoidal SSEP waveform, but this is not germane to the definition of a SSEP.By using zoom-FFT to record SSEPs at the theoretical limit of spectral resolution ΔF (where ΔF in Hz is the reciprocal of the recording duration in seconds) Regan and Regan discovered that the amplitude and phase variability of the SSEP can be sufficiently small that the bandwidth of the SSEP's constituent frequency components can be at the theoretical limit of spectral resolution up to at least a 500-second recording duration (0.002 Hz in this case).Repetitive sensory stimulation elicits a steady-state magnetic brain response that can be analysed in the same way as the SSEP.

[ "Stimulation", "Anesthesia", "Psychiatry", "Neuroscience", "Electrophysiology", "Flash visual evoked potentials", "P100 Latency", "VEP abnormalities", "Cognitive-evoked potentials", "Evoked potential study" ]
Parent Topic
Child Topic
    No Parent Topic