The phosphodiesterase inhibitor IBMX blocks the potassium channel THIK-1 from the extracellular side.

2020 
The two-pore-domain potassium channel (K2P channel) THIK-1 has several predicted protein kinase A (PKA) phosphorylation sites. In trying to elucidate whether THIK-1 is regulated via PKA we expressed THIK-1 channels in a mammalian cell line (CHO cells) and used the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine (IBMX) as a pharmacological tool to induce activation of PKA. Using the whole-cell patch-clamp recording we found that THIK-1 currents were inhibited by application of IBMX with an IC50 of 120 µM. Surprisingly, intracellular application of IBMX or of the second messenger cAMP via the patch pipette had no effect on THIK-1 currents. In contrast, extracellular application of IBMX produced a rapid and reversible inhibition of THIK-1. In patch-clamp experiments with outside-out patches, THIK‑1 currents were also inhibited by extracellular application of IBMX. Expression of THIK-1 channels in Xenopus oocytes was used to compare wild-type channels with mutated channels. Mutation of the putative PKA phosphorylation sites did not change the inhibitory effect of IBMX on THIK-1 currents. Mutational analysis of all residues of the (extracellular) helical cap of THIK-1 showed that mutation of the arginine residue at position 92, which is in the C2-P1 linker, markedly reduced the inhibitory effect of IBMX. This flexible linker region, which is unique for each K2P channel subtype, may be a possible target of channel-specific blockers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []