In cell biology, protein kinase A (PKA) is a family of enzymes whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase (EC 2.7.11.11). Protein kinase A has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism. In cell biology, protein kinase A (PKA) is a family of enzymes whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase (EC 2.7.11.11). Protein kinase A has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism. Protein kinase A, more precisely known as adenosine 3',5'-monophosphate (cyclic AMP)-dependent protein kinase was discovered by chemists Edmond H. Fischer and Edwin G. Krebs in 1968. They won the Nobel Prize in Physiology or Medicine in 1992 for their work on phosphorylation and dephosphorylation and how it relates to protein kinase A activity. PKA is one of the most widely researched protein kinases, in part because of its uniqueness; out of 540 different protein kinase genes that make up for human kinome, only one other protein kinase, Casein kinase 2, is known to exist in a physiological tetrameric complex. The diversity of mammalian PKA subunits was realized after Dr. Stan Knight and others identified possible four subunit C genes and presence of four R subunit genes. In 1991, Susan Taylor et al. crystallised the PKA Cα subunit, which revealed the bi-lobe structure of the protein kinase core for the very first time, providing a blueprint for all the other protein kinases in a genome ('the kinome'). The PKA holoenzyme exists as a tetramer, although higher order structures form in cells where PKA is targeted to specific components. The classical PKA holoenzyme structure consists of two regulatory subunits and two catalytic subunits. The catalytic subunit contains the active site, a series of canonical residues found in protein kinases that bind and hydrolyse ATP and a domain to bind the regulatory subunit. The regulatory subunit has domains to bind to cyclic AMP, a domain that interacts with catalytic subunit and an auto inhibitory domain. There are two major forms of regulatory subunit; RI and RII.