Modulation of HOXA9 after skeletal muscle denervation and reinnervation.

2020 
Introduction Homeobox A9 (HOXA9), the expression of which is promoted by Mixed Lineage Leukemia 1 (MLL1) and WD-40 repeat protein 5 (WDR5), is a homeodomain-containing transcription factor that plays an essential role in regulating stem cell activity. HOXA9 has been found to inhibit skeletal muscle regeneration and delay recovery after muscle wounding in aged mice, but little is known about its role in denervated/reinnervated muscles. Methods We performed detailed time-dependent expression analyses of HOXA9 and its promoters, MLL1 and WDR5, in rat gastrocnemius muscles after the following three types of sciatic nerve surgeries: nerve transection (denervation), end-to-end repair (repair), and sham operation (sham). Then, the specific mechanisms of HOXA9 were detected in vitro by transfecting primary satellite cells with empty pIRES2-DsRed2, pIRES2-DsRed2-HOXA9, empty pPLK/GFP-Puro, and pPLK/GFP-Puro-HOXA9 small hairpin RNA (shRNA) plasmids. Results We found, for the first time, that HOXA9 protein expression simultaneously increased with increasing denervated muscle atrophy severity and that upregulated MLL1 and WDR5 expression was partly associated with denervation. Indeed, in vitro experiments revealed that HOXA9 inhibited myogenic differentiation, affected the best known atrophic signaling pathways, and promoted apoptosis but did not eliminate the differentiation potential of primary satellite cells. Conclusions HOXA9 may promote denervated muscle atrophy by regulating the activity of satellite cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []