Probing and Controlling Photothermal Heat Generation in Plasmonic Nanostructures
2013
In the emerging field of thermoplasmonics, Joule heating associated with optically resonant plasmonic structures is exploited to generate nanoscale thermal hotspots. In the present study, new methods for designing and thermally probing thermoplasmonic structures are reported. A general design rationale, based on Babinet’s principle, is developed for understanding how the complementary version of ideal electromagnetic antennae can yield efficient nanoscale heat sources with maximized current density. Using this methodology, we show that the diabolo antenna is more suitable for heat generation compared with its more well-known complementary structure, the bow-tie antenna. We also demonstrate that highly localized and enhanced thermal hot spots can be realized by incorporating the diabolo antenna into a plasmonic lens. Using a newly developed thermal microscopy method based on the temperature-dependent photoluminescence lifetime of thin-film thermographic phosphors, we experimentally characterize the thermal...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
51
References
147
Citations
NaN
KQI