Therapy for many of the neocortical epilepsies remains unsatisfactory. Recent research has demonstrated that focal cooling, using thermoelectric (Peltier) devices, may be capable of terminating, or possibly even preventing, some types of seizures.
Adrenoleukodystrophy (ALD) is an X-linked peroxisomal disorder characterized by the abnormal beta-oxidation of very long chain fatty acids (VLCFA). In 35-40% of children with ALD, an acute inflammatory process occurs in the central nervous system (CNS) leading to demyelination that is rapidly progressive, debilitating and ultimately fatal. Allogeneic hematopoietic stem cell transplantation (HSCT) can halt disease progression in cerebral ALD (C-ALD) if performed early. In contrast, for advanced patients the risk of morbidity and mortality is increased with transplantation. To date there is no means of quantitating neuroinflammation in C-ALD, nor is there an accepted measure to determine prognosis for more advanced patients. As cellular infiltration has been observed in C-ALD, including activation of monocytes and macrophages, we evaluated the activity of chitotriosidase in the plasma and spinal fluid of boys with active C-ALD. Due to genotypic variations in the chitotriosidase gene, these were also evaluated. We document elevations in chitotriosidase activity in the plasma of patients with C-ALD (n = 38; median activity 1,576 ng/mL/hr) vs. controls (n = 16, median 765 ng/mL/hr, p = 0.0004), and in the CSF of C-ALD patients (n = 38; median activity 4,330 ng/mL/hr) vs. controls (n = 16, median 0 ng/mL/hr, p < 0.0001). In addition, activity levels of plasma and CSF chitotriosidase prior to transplant correlated with progression as determined by the Moser/Raymond functional score 1 year following transplantation (p = 0.002 and < 0.0001, respectively). These findings confirm elevation of chitotriosidase activity in patients with active C-ALD, and suggest that these levels predict prognosis of patients with C-ALD undergoing transplantation.
Abstract Information obtained over the past 25 years indicates that the amino acid glutamate functions as a fast excitatory transmitter in the mammalian brain. Studies completed during the last 15 years have also demonstrated that glutamate is a powerful neurotoxin, capable of killing neurons in the central nervous system when its extracellular concentration is sufficiently high. Recent experiments in a variety of preparations have shown that either blockade of synaptic transmission or the specific antagonism of postsynaptic glutamate receptors greatly diminishes the sensitivity of central neurons to hypoxia and ischemia. These experiments suggest that glutamate plays a key role in ischemic brain damage, and that drugs which decrease the accumulation of glutamate or block its postsynaptic effects may be a rational therapy for stroke.
✓ A massive left intracerebral hematoma was surgically evacuated from a 2-week-old infant. Pathological examination showed that the hemorrhage had developed within a fibrillary astrocytoma. Neonatal intracerebral hemorrhage should raise the question of congenital tumor because such a hemorrhage in this age group is rarely the result of trauma, bleeding diathesis, or vascular malformation.