Human microRNA (miR)-141 is a member of the miR‑200 family, which has been reported to be downregulated in gastric cancer, and involved in the proliferation of gastric cancer cells. However, little is currently known regarding its role in the migration of gastric cancer. The present study investigated the function of miR‑141 in gastric cancer cell migration, and evaluated the contribution of zinc finger E‑box‑binding homeobox 1 and 2 (ZEB1/2) in miR‑141 mediated migration of gastric cancer cells. The expression levels of miR‑141 and its potential ZEB1/2 targets were examined by quantitative polymerase chain reaction (qPCR) and western blotting, respectively. The migration of SGC‑7901 and HGC‑27 gastric cancer cells, which had been transfected with an miRNA precursor, was examined by cell migration and wound healing assays. A luciferase activity assay was used to validate whether ZEB1/2 was a direct target of miR‑141. The results demonstrated that overexpression of miR‑141 markedly inhibited the migration of gastric cancer cells in vitro. Forced overexpression of miR‑141 significantly reduced the luciferase activity of the 3'‑untranslated region of ZEB2 in gastric cancer cells. Furthermore, the mRNA and protein expression levels of ZEB2 were reduced in cells overexpressing miR‑141, whereas the protein expression levels of E‑cadherin were increased. In gastric tumor samples the expression levels of ZEB2 were inversely correlated with the expression of miR‑141. These results suggest that miR‑141 may be involved in the inhibition of gastric cancer cell migration, and that ZEB2 is a target gene of miR-141.
(1) Purpose: This study aimed to develop a physiologically based pharmacokinetic (PBPK) model to predict the trough concentration (Ctrough) of imatinib (IMA) at steady state in patients and to explore the role of free concentration (fup), α1-acid glycoprotein (AGP) level, and organic cation transporter 1 (OCT1) activity/expression in clinical efficacy. (2) Methods: The population PBPK model was built using physicochemical and biochemical properties, metabolizing and transporting kinetics, tissue distribution, and human physiological parameters. (3) Results: The PBPK model successfully predicted the Ctrough of IMA administered alone in chronic phase (CP) and accelerated phase (AP) patients, the Ctrough of IMA co-administered with six modulators, and Ctrough in CP patients with hepatic impairment. Most of the ratios between predicted and observed data are within 0.70-1.30. Additionally, the recommendations for dosing adjustments for IMA have been given under multiple clinical uses. The sensitivity analysis showed that exploring the fup and AGP level had a significant influence on the plasma Ctrough of IMA. Meanwhile, the simulations also revealed that OCT1 activity and expression had a significant impact on the intracellular Ctrough of IMA. (4) Conclusion: The current PBPK model can accurately predict the IMA Ctrough and provide appropriate dosing adjustment recommendations in a variety of clinical situations.
Abstract Studies have pointed to a role of PARP1 in regulating gene expression through poly(ADP-ribosyl)ating, sequence-specific, DNA-binding transcription factors. However, few examples exist that link this role of PARP1 to the immunogenicity of cancer cells. Here, we report that PARP1 poly(ADP-ribosyl)ates STAT3 and subsequently promotes STAT3 dephosphorylation, resulting in reduced transcriptional activity of STAT3 and expression of PD-L1. In this study, we showed that PARP1 silencing or pharmacologic inhibition enhanced the transcription of PD-L1 in cancer cells, which was accompanied by the upregulation of PD-L1 protein expression, both in the cytoplasm and on the cell surface. This induction of PD-L1 was attenuated in the absence of the transcription factor STAT3. Cell-based studies indicated that PARP1 interacted directly with STAT3 and caused STAT3 poly(ADP-ribosyl)ation. STAT3′s activation of PD-L1 transcription was abolished by the overexpression of wild-type PARP1 but not mutant PARP1, which lacks catalytic activity. PARP1 downregulation or catalytic inhibition enhanced the phosphorylation of STAT3, which was reversed by the ectopic expression of wild-type PARP1 but not by mutated PARP1. An inverse correlation between PARP1 and PD-L1 was also observed in clinical ovarian cancer samples. Overall, our study revealed PARP1-mediated poly(ADP-ribosyl)ation of STAT3 as a key step in inhibiting the transcription of PD-L1, and this mechanism exists in a variety of cancer cells.
PD-L1 (programmed cell death ligand 1) is frequently up-regulated in tumors and is critical in tumor immune escape. In addition to antibodies that block the interaction between PD-L1 and PD-1 (programmed cell death protein 1), small-molecule compounds that suppress PD-L1 expression also exhibit significant anti-tumor effects, emerging as a new strategy targeting PD-L1. By using a cell-based screening model, we found that butein, a natural chalcone compound, significantly reduced the cytoplasm and cell surface expression of PD-L1. This effect was further validated in various non-small cell lung cancer (NSCLC) cell lines and primary cells derived from clinical NSCLC tissues. Butein inhibited PD-L1 transcription, but not the half-life of PD-L1 protein. Butein reduced STAT1 level and butein-induced PD-L1 suppression was eliminated by the absence of STAT1. By co-culture system, butein improved tumor elimination by increasing the killing ability of CD8+ T cells. By in vivo study, we further confirmed that butein downregulated PD-L1 expression and improved infiltration of CD8+ T cells in tumor tissues. Taken together, our study suggested that butein could suppress the transcription of PD-L1 via downregulating STAT1, providing a theoretical basis for the application of butein in anti-tumor therapy.