The rate of major galaxy–galaxy merging is theoretically predicted to steadily increase with redshift during the peak epoch of massive galaxy development (1 ≤ z ≤ 3). We use close-pair statistics to objectively study the incidence of massive galaxies (stellar M1 > 2 × 1010 M⊙) hosting major companions (1 ≤ M1/M2 ≤ 4; i.e. <4:1) at six epochs spanning 0 < z < 3. We select companions from a nearly complete, mass-limited (≥5 × 109 M⊙) sample of 23 696 galaxies in the five Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey fields and the Sloan Digital Sky Survey. Using 5–50 kpc projected separation and close redshift proximity criteria, we find that the major companion fraction fmc(z) based on stellar mass-ratio (MR) selection increases from 6 per cent (z ∼ 0) to 16 per cent (z ∼ 0.8), then turns over at z ∼ 1 and decreases to 7 per cent (z ∼ 3). Instead, if we use a major F160W flux-ratio (FR) selection, we find that fmc(z) increases steadily until z = 3 owing to increasing contamination from minor (MR > 4:1) companions at z > 1. We show that these evolutionary trends are statistically robust to changes in companion proximity. We find disagreements between published results are resolved when selection criteria are closely matched. If we compute merger rates using constant fraction-to-rate conversion factors (Cmerg,pair = 0.6 and Tobs,pair = 0.65 Gyr), we find that MR rates disagree with theoretical predictions at z > 1.5. Instead, if we use an evolving Tobs,pair(z) ∝ (1 + z)−2 from Snyder et al., our MR-based rates agree with theory at 0 < z < 3. Our analysis underscores the need for detailed calibration of Cmerg,pair and Tobs,pair as a function of redshift, mass, and companion selection criteria to better constrain the empirical major merger history.
Abstract We present a catalog of 208 0.3 < z < 2.1 emission-line galaxies (ELGs) selected from 1D slitless spectroscopy obtained using Hubble’s WFC3 G102 grism, as part of the Faint Infrared Grism Survey. We identify ELG candidates by searching for significant peaks in all continuum-subtracted G102 spectra and, where possible, confirm candidates by identifying consistent emission lines in other available spectra or with published spectroscopic redshifts. We provide derived emission-line fluxes and errors, redshifts, and equivalent widths for H α λ 6563, [O iii ] λλ 4959, 5007, and [O ii ] λ 3727 emission lines, for ELGs down to AB(F105W) >28 and >10 −17 erg cm −2 s −1 line flux. We use the resulting line catalog to investigate a possible relationship between line emission and a galaxy’s environment. We use seventh-nearest-neighbor distances to investigate the typical surroundings of ELGs compared to non-ELGs, and we find that [O iii ] emitters are preferentially found at intermediate galaxy densities near galaxy groups. We characterize these ELGs in terms of the galaxy specific star formation rate (SFR) versus stellar mass and find no significant influence of environment on that relation. We calculate SFRs and find no dependence of SFR on local galaxy surface density for 0.3 < z < 0.8 H α emitters and for 0.8 < z < 1.3 [O iii ] emitters. We find similar rates of close-pair interaction between ELGs and non-ELGs. For galaxy surface densities Σ ≤ 30 Mpc −2 , we find no consistent effect of environment on star formation.
Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies' morphological properties across cosmic time. Here we present results of a multiwavelength investigation of the morphologies of "tadpole" galaxies at intermediate redshift (0.314
We present near-IR images of six passive galaxies (SSFR< 10(exp -2)/ Gyr) at redshift 1.3 < z < 2.4 with stellar mass M approximately 10(exp 11) solar M, selected from the Great Observatories Origins Deep Survey (GOODS), obtained with the Hubble Space Telescope (HST) and the WFC3/IR camera. These images provide the deepest and highest angular resolution view of the optical rest-frame morphology of such systems to date. We find that the light profile of these galaxies is generally regular and well described by a Sersic model with index typical of today's spheroids. We confirm the existence of compact and massive early-type galaxies at z approximately 2: four out of six galaxies have r(sub e) approximately 1 kpc or less. The images reach limiting surface brightness mu approximates 26.5 mag/square arcsec in the F160W bandpass; yet there is no evidence of a faint halo in the galaxies of our sample, even in their stacked image. We also find very weak morphological k-correction in the galaxies between the rest-frame UV (from the ACS z-band), and the rest-frame optical (WFC3 H-band): the visual classification, Sersic indices and physical sizes of these galaxies are independent or only mildly dependent on the wavelength, within the errors. The presence of an active nucleus is suspected in two out of six galaxies (33%), opening the intriguing possibility that a large, presently unaccounted population of AGN is hosted in these galaxies, possibly responsible for the cessation of star formation.
We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitess grism spectroscopic data obtained with the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random survey of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0< z<1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allows us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 Ha, [OIII] and/or [OII] emission lines have been identified in the PEARS sample of ~906 galaxies down to a limiting flux of ~1e-18 erg/s/cm^2. The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M_* > 1e9} M_sun decreases by an order of magnitude at z<0.5 relative to the number at 0.5
We perform a ground-based near-infrared spectroscopic survey using the Keck/MOSFIRE spectrograph to target Ly$\alpha$ emission at $7.0$4$\sigma$ level in eight $z>7$ galaxies, which include additional members of the known $z\sim7.7$ Ly$\alpha$-emitter (LAE) cluster (Tilvi et al. 2020). With the addition of these newly-discovered $z\sim7.7$ LAEs, this is currently the largest measured LAE cluster at $z>7$. The unusually-high Ly$\alpha$ detection rate at $z\sim7.7$ in this field suggests significantly stronger Ly$\alpha$ emission from the clustered LAEs than from the rest of our targets. We estimate the ionized bubble sizes around these LAEs and conclude that the LAEs are clustered within an extended ionized structure created by overlapping ionized bubbles which allow the easier escape of Ly$\alpha$ from galaxies. It is remarkable that the brightest object in the cluster has the lowest measured redshift of the Ly$\alpha$ line, being placed in front of the other LAEs in the line-of-sight direction. This suggests that we are witnessing the enhanced IGM transmission of Ly$\alpha$ from galaxies on the rear side of an ionized area. This could be a consequence of Ly$\alpha$ radiative transfer: Ly$\alpha$ close to the central velocity is substantially scattered by the IGM while Ly$\alpha$ from the rear-side galaxies is significantly redshifted to where it has a clear path.
We present the first robust measurement of the high redshift mass-metallicity (MZ) relation at 10^{8}< M/M_{\sun} < 10^{10}, obtained by stacking spectra of 83 emission-line galaxies with secure redshifts between 1.3 < z < 2.3. For these redshifts, infrared grism spectroscopy with the Hubble Space Telescope Wide Field Camera 3 is sensitive to the R23 metallicity diagnostic: ([OII]3726,3729 + [OIII] 4959,5007)/H\beta. Using spectra stacked in four mass quartiles, we find a MZ relation that declines significantly with decreasing mass, extending from 12+log(O/H) = 8.8 at M=10^{9.8} M_{\sun} to 12+log(O/H)= 8.2 at M=10^{8.2} M_{\sun}. After correcting for systematic offsets between metallicity indicators, we compare our MZ relation to measurements from the stacked spectra of galaxies with M>10^{9.5} M_{\sun} and z~2.3. Within the statistical uncertainties, our MZ relation agrees with the z~2.3 result, particularly since our somewhat higher metallicities (by around 0.1 dex) are qualitatively consistent with the lower mean redshift z=1.76 of our sample. For the masses probed by our data, the MZ relation shows a steep slope which is suggestive of feedback from energy-driven winds, and a cosmological downsizing evolution where high mass galaxies reach the local MZ relation at earlier times. In addition, we show that our sample falls on an extrapolation of the star-forming main sequence (the SFR-M_{*} relation) at this redshift. This result indicates that grism emission-line selected samples do not have preferentially high SFRs. Finally, we report no evidence for evolution of the mass-metallicity-SFR plane; our stack-averaged measurements show excellent agreement with the local relation.
We report on the host properties of five X-ray luminous Active Galactic Nuclei (AGN) identified at $3 < z < 5$ in the first epoch of imaging from the Cosmic Evolution Early Release Science Survey (CEERS). Each galaxy has been imaged with the \textit{James Webb Space Telescope} (\jwst) Near-Infrared Camera (NIRCam), which provides spatially resolved, rest-frame optical morphologies at these redshifts. We also derive stellar masses and star formation rates for each host galaxy by fitting its spectral energy distribution using a combination of galaxy and AGN templates. The AGN hosts have an average stellar mass of ${\rm log}(M_{*}/{\rm M_{\odot}} )= 11.0$, making them among the most massive galaxies detected at this redshift range in the current CEERS pointings, even after accounting for nuclear light from the AGN. We find that three of the AGN hosts have spheroidal morphologies, one is a bulge-dominated disk and one host is dominated by point-like emission. None are found to show strong morphological disturbances that might indicate a recent interaction or merger event. Notably, all four of the resolved hosts have rest-frame optical colors consistent with a quenched or post-starburst stellar population. The presence of AGN in passively evolving galaxies at $z>3$ is significant because a rapid feedback mechanism is required in most semi-analytic models and cosmological simulations to explain the growing population of massive quiescent galaxies observed at these redshifts. Our findings are in general agreement with this picture and show that AGN can continue to inject energy into these systems after their star formation is curtailed, possibly helping to maintain their quiescent state.