We show how sintering in different atmospheres affects the structural, microstructural, and functional properties of ~30 μm thick films of K0.5Na0.5NbO3 (KNN) modified with 0.38 mol% K5.4Cu1.3Ta10O29 and 1 mol% CuO. The films were screen printed on platinized alumina substrates and sintered at 1100 °C in oxygen or in air with or without the packing powder (PP). The films have a preferential crystallographic orientation of the monoclinic perovskite phase in the [100] and [-101] directions. Sintering in the presence of PP contributes to obtaining phase-pure films, which is not the case for the films sintered without any PP notwithstanding the sintering atmosphere. The latter group is characterized by a slightly finer grain size, from 0.1 μm to ~2 μm, and lower porosity, ~6% compared with ~13%. Using piezoresponse force microscopy (PFM) and electron backscatter diffraction (EBSD) analysis of oxygen-sintered films, we found that the perovskite grains are composed of multiple domains which are preferentially oriented. Thick films sintered in oxygen exhibit a piezoelectric d33 coefficient of 64 pm/V and an effective thickness coupling coefficient kt of 43%, as well as very low mechanical losses of less than 0.5%, making them promising candidates for lead-free piezoelectric energy harvesting applications.
Synchrotron-based scanning photoelectron microscopy (SPEM) has opened unique opportunities for exploiting processes occurring at surfaces and interfaces, which control the properties of materials for electrochemical devices, where issues of chemical and morphological complexity at microscopic length scales should be faced and understood. The present article aims to demonstrate the present capabilities of SPEM to explore the surface composition of micro- and nano-structured materials, focusing on cases relevant to electrochemical technologies. We report and discuss a selection of recent results about three different systems, targeting hot topics in the fields of electrochemical energy storage and electrochemical fabrication: (i) an in-depth analysis of Ag-In electrodeposited alloys exhibiting dynamic pattern formation, (ii) the analysis of electrochemical processes at the electrodes of a self-driven solid oxide fuel cell and (iii) an operando characterization of a single-chamber solid oxide fuel cell. The last example has been performed at near-ambient pressure conditions using a unique specially designed setup which extends the traditional capabilities of scanning photoemission microscopes in the ultra-high and high-vacuum regimes to operating conditions that are closer to realistic ones, contributing to overcome the so-called “pressure gap”.
We studied the effect of porosity and pore morphology on the functional properties of Pb(Zr0.53Ti0.47)O3 (PZT) ceramics for application in high frequency ultrasound transducers. By sintering a powder mixture of PZT and polymethylmetacrylate spherical particles (1.5 and 10 μm) at 1080°C, we prepared ceramics with ∼30% porosity with interconnected micrometer sized pores and with predominantly ∼8 μm spherical pores. The acoustic impedance was ∼15 MRa for both samples, which was lower than for the dense PZT. The attenuation coefficient α (at 2.25 MHz) was higher for ceramics with ∼8 μm pores (0.96 dB mm− 1 MHz− 1), in comparison to the ceramic with smaller pores (0.56 dB mm− 1 MHz− 1). The high α value enables the miniaturisation of the transducer, which is crucial for medical imaging probes. The dielectric and piezoelectric coefficients, polarisation, and strain response decreased with increased porosity and decreased pore/grain size. We suggest a possible role of pore/grain size on the switching behaviour.
In the last decades, a significant amount of research has been focused on the development of miniaturized and portable electrochemical sensors in the form of screen-printed electrodes (SPEs). When performing voltammetric measurements using SPEs, especially in the case of carbon-based electrodes, additional peaks can appear and overlap with analytes' signals or otherwise interfere with results. Therefore, the development of pretreatment methods that enable the removal of interferences is of great importance for SPEs utilization, e.g. for sensor applications. Moreover, electrode pretreatment can also be used to improve electron transfer kinetics, including reversibility of the studied redox processes. In this work, we present the evaluation of different pretreatment methods using cyclic voltammetry and potentiostatic anodization, applied on an in-house graphite-glass composite working electrodes. With the use of X-ray photoelectron spectroscopy and scanning electron microscopy it was confirmed that the surface of working electrode was contaminated by sub-micrometer sized silver particles, which resulted in two interference peaks. Several strong acids, including H2SO4, HNO3, and HCl, as well as phosphate buffer solution, were evaluated as electrolytes for electrochemical pretreatment. A rapid, simple, and low-cost pretreatment protocol that enables the removal of the interference peaks, as well as improved voltammetric signals for [Fe(CN)6]3−/4− redox probe was developed. We propose the optimal pretreatment method in H2SO4 as a protocol that could be universally applied for carbon, carbon-glass, or similar types of SPEs before performing voltammetric experiments and/or further modifications of SPEs.