Human papillomavirus 16 (HPV16) is a worldwide health threat and an etiologic agent of cervical cancer. To understand the antigenic properties of HPV16, we pursued a structural study to elucidate HPV capsids and antibody interactions. The cryo-electron microscopy (cryo-EM) structures of a mature HPV16 particle and an altered capsid particle were solved individually and as complexes with fragment of antibody (Fab) from the neutralizing antibody H16.V5. Fitted crystal structures provided a pseudoatomic model of the virus-Fab complex, which identified a precise footprint of H16.V5, including previously unrecognized residues. The altered-capsid-Fab complex map showed that binding of the Fab induced significant conformational changes that were not seen in the altered-capsid structure alone. These changes included more ordered surface loops, consolidated so-called "invading-arm" structures, and tighter intercapsomeric connections at the capsid floor. The H16.V5 Fab preferentially bound hexavalent capsomers likely with a stabilizing effect that directly correlated with the number of bound Fabs. Additional cryo-EM reconstructions of the virus-Fab complex for different incubation times and structural analysis provide a model for a hyperstabilization of the capsomer by H16.V5 Fab and showed that the Fab distinguishes subtle differences between antigenic sites.Our analysis of the cryo-EM reconstructions of the HPV16 capsids and virus-Fab complexes has identified the entire HPV.V5 conformational epitope and demonstrated a detailed neutralization mechanism of this clinically important monoclonal antibody against HPV16. The Fab bound and ordered the apical loops of HPV16. This conformational change was transmitted to the lower region of the capsomer, resulting in enhanced intercapsomeric interactions evidenced by the more ordered capsid floor and "invading-arm" structures. This study advances the understanding of the neutralization mechanism used by H16.V5.
As a para-retrovirus, hepatitis B virus (HBV) is an enveloped virus with a double-stranded (DS) DNA genome that is replicated by reverse transcription of an RNA intermediate, the pregenomic RNA or pgRNA. HBV assembly begins with the formation of an "immature" nucleocapsid (NC) incorporating pgRNA, which is converted via reverse transcription within the maturing NC to the DS DNA genome. Only the mature, DS DNA-containing NCs are enveloped and secreted as virions whereas immature NCs containing RNA or single-stranded (SS) DNA are not enveloped. The current model for selective virion morphogenesis postulates that accumulation of DS DNA within the NC induces a "maturation signal" that, in turn, triggers its envelopment and secretion. However, we have found, by careful quantification of viral DNA and NCs in HBV virions secreted in vitro and in vivo, that the vast majority of HBV virions (over 90%) contained no DNA at all, indicating that NCs with no genome were enveloped and secreted as empty virions (i.e., enveloped NCs with no DNA). Furthermore, viral mutants bearing mutations precluding any DNA synthesis secreted exclusively empty virions. Thus, viral DNA synthesis is not required for HBV virion morphogenesis. On the other hand, NCs containing RNA or SS DNA were excluded from virion formation. The secretion of DS DNA-containing as well as empty virions on one hand, and the lack of secretion of virions containing single-stranded (SS) DNA or RNA on the other, prompted us to propose an alternative, "Single Strand Blocking" model to explain selective HBV morphogenesis whereby SS nucleic acid within the NC negatively regulates NC envelopment, which is relieved upon second strand DNA synthesis.
Enterovirus 71 (EV71) is a picornavirus that causes outbreaks of hand, foot, and mouth disease (HFMD), primarily in the Asia-Pacific area. Unlike coxsackievirus A16, which also causes HFMD, EV71 induces severe neuropathology leading to high fatalities, especially among children under the age of 6 years. Currently, no established vaccines or treatments are available against EV71 infection. The monoclonal antibody MA28-7 neutralizes only specific strains of EV71 that have a conserved glycine at amino acid VP1-145, a surface-exposed residue that maps to the 5-fold vertex and that has been implicated in receptor binding. The cryo-electron microscopy structure of a complex between EV71 and the Fab fragment of MA28-7 shows that only one Fab fragment occupies each 5-fold vertex. A positively charged patch, which has also been implicated in receptor binding, lies within the Fab footprint. We identify the strain-specific epitope of EV71 and discuss the possible neutralization mechanisms of the antibody.
The foot-and-mouth disease virus (FMDV) structural protein precursor, P1-2A, is cleaved by the virus-encoded 3C protease (3C(pro)) into the capsid proteins VP0, VP1 and VP3 (and 2A). In some systems, it is difficult to produce large amounts of these processed capsid proteins since 3C(pro) can be toxic for cells. The expression level of 3C(pro) activity has now been reduced relative to the P1-2A, and the effect on the yield of processed capsid proteins and their assembly into empty capsid particles within mammalian cells has been determined. Using a vaccinia-virus-based transient expression system, P1-2A (from serotypes O and A) and 3C(pro) were expressed from monocistronic cDNA cassettes as P1-2A-3C, or from dicistronic cassettes with the 3C(pro) expression dependent on a mutant FMDV internal ribosome entry site (IRES) (designated P1-2A-mIRES-3C). The effects of using a mutant 3C(pro) with reduced catalytic activity or using two different mutant IRES elements (the wt GNRA tetraloop sequence GCGA converted, in the cDNA, to GAGA or GTTA) were analysed. For both serotypes, the P1-2A-mIRES-3C construct containing the inefficient GTTA mutant IRES produced the highest amount of processed capsid proteins. These products self-assembled to form FMDV empty capsid particles, which have a related, but distinct, morphology (as determined by electron microscopy and reconstruction) from that determined previously by X-ray crystallography. The assembled empty capsids bind, in a divalent cation-dependent manner, to the RGD-dependent integrin αvβ6, a cellular receptor for FMDV, and are recognized appropriately in serotype-specific antigen ELISAs.
Enterovirus 71 (EV71) is responsible for seasonal outbreaks of hand, foot, and mouth disease in the Asia-Pacific region. The virus has the capability to cause severe disease and death, especially in young children. Although several vaccines are currently in clinical trials, no vaccines or therapeutics have been approved for use. Previous structural studies have revealed that two antigenically distinct capsid forms are produced in EV71-infected cells: an expanded empty capsid, sometimes called a procapsid, and the infectious virus. Specifically, an immunodominant epitope of EV71 that maps to the virus canyon is structurally different in the procapsid and virus. This structure-function study shows that the procapsid can sequester antibodies, thus enhancing EV71 infection in vitro. The results presented here suggest that, due to conformational differences between the EV71 procapsid and virus, the presence of the procapsid in natural virus infections should be considered in the future design of vaccines or therapeutics.In a picornavirus infection, both an infectious and a noninfectious empty capsid, sometimes referred to as a procapsid, are produced. It was novel to discover that the procapsid form of EV71 was expanded and antigenically distinct from the infectious virus. Previously, it had been supposed that this empty capsid was an off-pathway dead end or at best served for storage of pentameric subunits, which was later shown to be unlikely. It remains unexplained why picornaviruses evolutionarily conserve the wasteful production of so much noninfectious capsid. Here, we demonstrate that the EV71 procapsid has different antigenic properties than the infectious virus. Thus, the procapsid has the capacity to sequester neutralizing antibody and protect the virus, promoting or restoring a successful infection in vitro. This important observation should be considered in the future design and development of vaccines and therapeutics.
Cancers attributable to human papillomavirus (HPV) place a huge burden on the health of both men and women. The current commercial vaccines are genotype specific and provide little therapeutic benefit to patients with existing HPV infections. Identifying the conformational epitopes on the virus capsid supports the development of improved recombinant vaccines to maximize long-term protection against multiple types of HPV. Fragments of antibody (Fab) digested from the neutralizing monoclonal antibodies H16.V5 (V5) and H16.U4 (U4) were bound to HPV16 capsids and the structures of the two virus-Fab complexes were solved to near atomic resolution using cryo-electron microscopy. The structures reveal virus conformational changes, the Fab-binding mode to the capsid, the residues comprising the epitope and indicate a potential interaction of U4 with the minor structural protein, L2. Competition enzyme-linked immunosorbent assay (ELISA) showed V5 outcompetes U4 when added sequentially, demonstrating a steric interference even though the footprints do not overlap. Combined with our previously reported immunological and structural results, we propose that the virus may initiate host entry through an interaction between the icosahedral five-fold vertex of the capsid and receptors on the host cell. The highly detailed epitopes identified for the two antibodies provide a framework for continuing biochemical, genetic and biophysical studies.
No acute infectious disease has ever been studied with greater intensity than acute anterior poliomyelitis, and yet, despite the great accumulation of experimental data, no positive method of prevention and no promising method of treatment has thus far been found. While this paper deals primarily with the application of chemicals to the olfactory nerves as a preventive measure against the disease, it is of interest to review some of the history and the experimental data which may lead to success in this method of prophylactic treatment. Poliomyelitis has been a recognized entity since Joerg1described it in 1816. Heine, between the years 1840 and 1860, collected cases of a definite type from the records of paralysis of children and raised this type, the flaccid, atrophic spinal type, to a definite clinical entity. Medin, by 1890, had founded the symptomatology of the disease, and Wickman, by his clinical studies and his