Between 2006 and 2007, palm trees growing in both gardens and public parks and natural palm groves in the Canary Islands ( Spain ), and showing symptoms of wilt and dieback, were surveyed. Isolates were recovered from affected tissues of the crowns, leaves and vascular fragments on potato dextrose agar (PDA). After incubation, the Fusarium spp. colonies recovered were single-spored. They were transferred to PDA and Spezieller Nahrstoffarmer Agar (SNA) for morphological identification. Identification of Fusarium oxysporum f. sp. Canariensis was confirmed by PCR with the specific primers HK66 and HK67, which amplified a fragment of 567 bp. Fusarium wilt caused by F. oxysporum f. sp. canariensis was found on 54 Phoenix canariensis trees growing on four islands: Gran Canaria, Fuerteventura, La Palma and Tenerife. F. proliferatum occurred on fifteen palms (10 P. canariensis , 1 P. dactylifera , 3 Roystonea regia and 1 Veitchia joannis ) located in Gran Canaria, Fuerteventura and Tenerife . Both these Fusarium species were found only in diseased palms from gardens and public parks, but not in natural palm groves. The results show that Fusarium wilt of P. canariensis is common in the Canary Islands and for the first time report F. proliferatum affecting different palm species in those islands.
ESPINO, A.; BARROSO, J. y CARNERO, A., 1988: Resultados preliminares de la lucha integrada sobre pepino en Canarias. Bol. San. Veg. Plagas., 14 (1): 55-66. An integrated control program was carried out in a cucumber growth in the north of Tenerife. Encarsia formosa (liymenoptero Aphelinidae) was artificially introduced to control whitefly Trialeurodes vaporariorum (Homoptero Aleurodidae) and Iphiseius degenerans (Acari Phytoseidae) was also used to control Tetranychus urticae (Acari Phytoseidae) associated with the use of yellow traps and chemicals compatible with the biological control. We have also studied certain aspects of the population dynamics of whitefly, E. formosa and leaf-miner Liriomyza trifolii (Diptera Agromyzidae). The success of the biological control of whitefly depends essentially on the external migration. Yellow traps do not control efficiently the whitefly, but are appropiate for the leaf-miner. Using only 20% of the standard chemical treatment did not affected the production.
Tomato torrado virus (ToTV) is a recently identified Picorna-like virus that causes "torrado disease" in tomatoes (4). Typical symptoms of "torrado disease" seen in tomato crops (Solanum lycopersicum L. formerly Lycopersicon esculentum L.) were initially defined as yellow areas at the base of the leaflet that later developed into necrotic spots that sometimes abscised, leaving holes in the leaflet. Other plants showed extensive necrosis progressing from the base to the tip of the leaflet. Fruits were distorted with necrotic lines on the surface that often cracked. Affected plants had a burnt-like appearance and the production was seriously reduced. These symptoms have been observed in tomato crops in Murcia (Spain) and the Canary Islands (Spain) (1). To identify possible alternative hosts that may serve as virus reservoirs, samples of 72 different common weed species were collected in greenhouses in Murcia and the Canary Islands where "torrado disease" symptoms were observed in tomatoes. Forty-seven showed virus-like symptoms and 25 were asymptomatic. Symptoms included mild mosaic, blistering, vein clearing, interveinal yellowing, yellow spots, necrosis, leaf distortion, and curling. Samples were analyzed by one-step reverse transcription (RT)-PCR using primers specific for ToTV to amplify 580 bp of the polyprotein region of RNA2 (3) and dot-blot hybridization with a digoxygenin-labeled RNA probe complementary to the same portion of the ToTV genome. Twenty-two of the 72 weed samples belonging to Amaranthus sp. (Amaranthaceae); Spergularia sp. (Caryophyllaceae); Atriplex sp., Chenopodium ambrosioides L., Chenopodium sp., and Halogetum sativus (Loef. ex L.) Moq. (Chenopodiaceae); Senebiera didyma Pers. (Cruciferae); Malva sp. (Malvacae); Polygonum sp. (Polygonaceae); and Nicotiana glauca Graham and Solanum nigrum L. (Solanaceae) were positive for ToTV by molecular hybridization (10 samples) and RT-PCR (22 samples, including the samples positive by molecular hybridization). PCR products obtained from Atriplex sp. (Canary Islands) and S. didyma (Murcia) were sequenced (GenBank Accessions EU090252 and EU090253). BLAST analysis showed 99% identity to ToTV RNA2 sequence (GenBank Accession DQ388880). Two tomato plants were positive for ToTV by RT-PCR after mechanical back-inoculation, although no symptoms were observed. This study showed ToTV infects common weeds present in Spanish tomato crops. Recently, Trialeurodes vaporariorum has been reported to transmit ToTV (2), although the efficiency of transmission is unknown. The vector-assisted transmission of ToTV could explain the infection of weeds in affected greenhouses. To our knowledge, this is the first report of natural infection of weeds by ToTV. References: (1) A. Alfaro-Fernández et al. Plant Dis. 91:1060, 2007. (2) H. Pospieszny et al. Plant Dis. 91:1364, 2007. (3) J. Van der Heuvel et al. Plant Virus Designated Tomato Torrado Virus. Online publication. World Intellectual Property Organization WO/2006/085749, 2006. (4) M. Verbeek et al. Arch. Virol. 152:881, 2007.
In 2003, greenhouse-grown tomato crops (Lycopersicon esculentum Mill.) in the Canary Islands (Spain) were observed showing an initial yellowing in defined areas at the base of the leaflet that later developed into necrotic spots or an extensive necrotic area progressing from the base to tip. Fruits were also affected, showing necrotic areas and often developing cracking. Generally, the plants that were affected seemed to be burnt, their growth was reduced, and the production level was seriously damaged. Similar symptoms have been observed in Murcia (Spain) since 2001, which have been recently associated with Tomato torrado virus (ToTV) infection (2). Twenty-two tomato samples showing "torrado disease" symptoms were collected from different greenhouses between 2003 and 2006 in Las Palmas (Canary Islands, Spain). To verify the identity of the disease, double-antibody sandwich (DAS)-ELISA was performed on leaf and fruit extracts of symptomatic plants using polyclonal antibodies specific to Potato virus Y (PVY), Tomato mosaic virus (ToMV), Tomato spotted wilt virus (TSWV) (Loewe Biochemica, Sauerlach, Germany), and Pepino mosaic virus (PepMV) (DSMZ, Braunschweig, Germany). Total RNA was extracted from the 22 tomato samples with the RNAwiz Extraction kit (Ambion, Huntingdon, United Kingdom) and tested using one-step reverse-transcription (RT)-PCR with the SuperScript Platinum Taq kit (Invitrogen Life Technologies, Barcelona, Spain) with primers specific to PepMV (1) and ToTV (2). All analyses included healthy tomato plants as negative controls. Five of the twenty-two tomato samples were positive for PepMV and negative for the other viruses tested by serological analysis. However, all 22 samples were positive in RT-PCR performed with the primers specific to ToTV segment RNA2. The RT-PCR assay to detect ToTV produced an amplicon of the expected size (580 bp). No amplification product was observed when healthy plants or a water control were used as a template in the RT-PCR reaction. The ToTV RT-PCR product was purified (High Pure PCR Product Purification kit, Roche Diagnostics, Mannheim, Germany) and sequenced. BLAST analysis of one sequence (GenBank Accession No. EF436286) showed 99% identity to ToTV RNA2 sequence (GenBank Accession No. DQ388880). To our knowledge, this is the first report of ToTV in the Canary Islands. References: (1) I. Pagán et al. Phytopathology 96:274, 2006. (2) M. Verbeek et al. Online Publication. doi:10.1007/s00705-006-0917-6. Arch. Virol., 2007.
Pepino mosaic virus (PepMV, genus Potexviru s) is an emergent and highly infectious pathogen responsible for economically important diseases in tomato crops. An extensive survey of tomato plants showing PepMV‐like symptoms was carried out in 2017 to study the PepMV genetic diversity and populations structure in different tomato‐producing areas of Spain and Morocco. Molecular dot‐blot hybridization analysis showed that virus populations from Spain and Morocco were mainly composed of isolates belonging to the Chilean 2 (CH2) strain, although isolates of the European (EU) strain were detected in significant proportions in Spanish populations, mainly in mixed infections. A few isolates of the American (US1) strain were also detected in Tenerife (Canary Islands, Spain) crops. Eighty‐five isolates were randomly selected and sequenced in the genomic region that encodes the triple gene block and capsid protein genes. Our phylogenetic and population genetics analyses confirmed the presence of the CH2, EU and US1 PepMV strains. Despite the high genetic similarity observed within populations, variants were maintained at low frequency under purifying selection, and differentiation among more geographically distant locations was identified, with potential gene flow contributing to the shaping of the PepMV populations structure.