Aluminum (Al) toxicity is a major threat to global crop production in acidic soils, which can be mitigated by natural substances such as pyroligneous acid (PA). However, the effect of PA in regulating plant central carbon metabolism (CCM) under Al stress is unknown. In this study, we investigated the effects of varying PA concentrations (0, 0.25 and 1% PA/ddH2O (v/v)) on intermediate metabolites involved in CCM in tomato (Solanum lycopersicum L., 'Scotia') seedlings under varying Al concentrations (0, 1 and 4 mM AlCl3). A total of 48 differentially expressed metabolites of CCM were identified in the leaves of both control and PA-treated plants under Al stress. Calvin-Benson cycle (CBC) and pentose phosphate pathway (PPP) metabolites were considerably reduced under 4 mM Al stress, irrespective of the PA treatment. Conversely, the PA treatment markedly increased glycolysis and tricarboxylic acid cycle (TCA) metabolites compared to the control. Although glycolysis metabolites in the 0.25% PA-treated plants under Al stress were comparable to the control, the 1% PA-treated plants exhibited the highest accumulation of glycolysis metabolites. Furthermore, all PA treatments increased TCA metabolites under Al stress. Electron transport chain (ETC) metabolites were higher in PA-treated plants alone and under 1 mM, Al but were reduced under a higher Al treatment of 4 mM. Pearson correlation analysis revealed that CBC metabolites had a significantly strong positive (r = 0.99; p < 0.001) association with PPP metabolites. Additionally, glycolysis metabolites showed a significantly moderate positive association (r = 0.76; p < 0.05) with TCA metabolites, while ETC metabolites exhibited no association with any of the determined pathways. The coordinated association between CCM pathway metabolites suggests that PA can stimulate changes in plant metabolism to modulate energy production and biosynthesis of organic acids under Al stress conditions.
Plants are sessile, and their ability to reprogram their metabolism to adapt to fluctuations in soil water level is crucial but not clearly understood. A study was performed to determine alterations in intermediate metabolites involved in central carbon metabolism (CCM) following exposure of Mexican mint (Plectranthus amboinicus) to varying watering regimes. The water treatments were regular watering (RW), drought (DR), flooding (FL), and resumption of regular watering after flooding (DHFL) or after drought (RH). Leaf cluster formation and leaf greening were swift following the resumption of regular watering. A total of 68 key metabolites from the CCM routes were found to be significantly (p < 0.01) impacted by water stress. Calvin cycle metabolites in FL plants, glycolytic metabolites in DR plants, total tricarboxylic acid (TCA) cycle metabolites in DR and DHFL plants, and nucleotide biosynthetic molecules in FL and RH plants were significantly (p < 0.05) increased. Pentose phosphate pathway (PPP) metabolites were equally high in all the plants except DR plants. Total Calvin cycle metabolites had a significantly (p < 0.001) strong positive association with TCA cycle (r = 0.81) and PPP (r = 0.75) metabolites. Total PPP metabolites had a moderately positive association with total TCA cycle metabolites (r = 0.68; p < 0.01) and a negative correlation with total glycolytic metabolites (r = -0.70; p < 0.005). In conclusion, the metabolic alterations of Mexican mint plants under different watering regimes were revealed. Future studies will use transcriptomic and proteomic approaches to identify genes and proteins that regulate the CCM route.
Microplastics (MPs) are plastic particles ranging from 1000 to 5000 µm in diameter, posing a growing environmental and health risk. Composting is an excellent way to add nutrient-rich humus to the soil to boost plant development, but it also pollutes agricultural soil with MPs. Previous research has shown that MPs can threaten plant development, production, and quality, hence they must be studied. This study examined how a mixture of three MP types—polyethene (PE), polystyrene (PS), and polypropene (PP)—affected greenhouse tomato plant development. MP types were spiked at 1% w/w (MPs/soil) in tomato pots, whereas non-spiked growth medium was the control. Statistical analysis was conducted using an analysis of variance (ANOVA) and Tukey’s test (95% confidence) to compare treatments and controls. Soil spiked with MPs increased chlorophyll content (SPAD), transpiration rate, photosynthetic rate, and stomata conductance by 5.16%, 16.71%, 25.81%, and 20.75%, respectively, compared to the control but decreased sub-stomata CO2 concentration by 3.23%. However, MPs did not significantly affect tomato plant morpho-physiological features (p > 0.05). Biochemical analysis of tomato fruits showed significant (p < 0.05) reduction effects of MPs on carotenoid, total flavonoid, and sugar but increased protein, ascorbate, and peroxidase activity. However, there was no significant difference (p > 0.05) in the effects of the combined MPs on total phenolic content. These data imply that whereas MPs did not influence tomato plant physiological and morphological properties, tomato fruit biochemistry was reduced. This raise concerns that an increase in MPs in soils may reduce antioxidant content and negatively affect human health contributing to a decrease in food security.
Temperature stress is a major abiotic factor significantly impacting crop growth, development and productivity. In this study, we investigated the effects of different growth temperatures (10°C, 22°C, and 35°C) on the morphological, physiological and biochemical responses of five important crop species: green lettuce, hemp, mint, red lettuce and tomato. The results revealed that plant height and stem girth of tomato plants were not significantly (p > 0.05) altered under 22°C and 35°C, but were reduced by ca. 61.9% and 65.7% respectively under 10°C compared to 22°C. Green lettuce plants grown under 22°C had significantly (p < 0.001) higher total chlorophyll content of ca. 35.9% than those under 10°C. Mint plants exposed to extreme temperatures of 35°C and 10°C showed significant (p < 0.001) reductions of up to 19.7%, 60.2%, and 45.8% in chlorophyll fluorescence indices Fv/Fm, Fv/Fo, and total chlorophyll content, respectively, compared to those grown under 22°C. Malonaldehyde content (MDA) in mint and tomato plants increased by ca. 686.7% and 476.4%, respectively, under 10°C compared to 22°C, while in red lettuce, MDA content was reduced by ca. 136% under 10°C compared to 35°C. Notably, flavonoid accumulation was significantly higher in hemp plants compared to other species. The results suggest that crop species exhibit diverse responses to temperature stress, extending beyond morphological, physiological and biochemical adaptations. This diversity shows the differential adaptive strategies employed by various plant species in response to temperature stress conditions. The findings of this study can be explored by various crop improvement programs to enhance the tolerance of these crops to temperature extremes, thereby contributing to food security amidst the threats posed by climate change.
Diabetes is a metabolic disorder with no definite treatment, but it can be controlled by changing lifestyle and diet. Consumption of high-fiber and nutrient-rich foods including vegetables have been shown to reduce risks of obesity and Type II Diabetes Mellitus (T2DM). Also, many herbal plants have been associated with reduced risks of T2DM because of their composition of secondary metabolites. Antioxidant activities of some secondary metabolites have potent inhibitory effects against inflammation linked with insulin resistance and oxidative stress. More than 800 known medicinal plants are used to control diabetes and its relevant complications. However, variations in preharvest factors including plant genotype, growing medium properties, climatic factors, and management practices can influence plant growth and their accumulation of phytochemicals with health-promoting properties. However, the effects of these preharvest factors on the antidiabetic properties of plant secondary metabolites are neither explicit nor easily accessible in the literature. Therefore, this review aims to document recent studies that reported on under-exploited medicinal plants with antidiabetic properties. We reviewed several important preharvest factors that can potentially affect the synthesis of phytoconstituents which possess antidiabetic properties. This review will help identify gaps for future research in phytomedicine and functional foods.
Abstract Pyroligneous acid (PA) is rich in bioactive compounds and known to have the potential to improve crop productivity and phytochemical content. However, the synergistic effect of PA and fertilizer has not been thoroughly studied. In this study, we assessed the biostimulatory effect of different rates of foliar PA application (i.e., 0, 0.25, 0.5, 1, and 2% PA/ddH 2 O ( v/v )) combined with full rate (i.e., 0.63, 0.28, 1.03 g) and half rate of nitrogen-phosphorus-potassium (NPK) fertilizer on the yield and nutritional quality of greenhouse-grown tomato ( Solanum lycopersicum ‘Scotia’). Plants treated with 0.25% and 0.5% PA showed a significantly ( p < 0.001) higher maximum quantum efficiency of PSII ( Fv/Fm ) and increased potential photosynthetic capacity ( Fv/Fo ), especially when combined with the full NPK rate. Leaf chlorophyll was significantly ( p < 0.001) increased by ca. 0.60 and 0.49 folds in plants treated with 2% PA and full NPK rate compared to no spray and water, respectively. Total number of fruits was significantly ( p < 0.001) increased by ca. 0.56 folds with the 2% PA irrespective of the NPK rate. The combined 2% PA and full NPK rate enhanced total fruit weight and the number of marketable fruits. Similarly, fruit protein, sugar and 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity were significantly ( p < 0.001) enhanced by the combined 2% PA and full NPK rate. In contrast, the 0.5% PA combined with half NPK rate increased fruit carotenoid and phenolic contents while the 2% PA plus half NPK rate enhanced fruit flavonoid content. Generally, the synergistic effect of PA and NPK fertilizer increased fruit elemental composition. These showed that foliar application of PA can be a novel and environmentally friendly strategy to increase the productivity and quality of tomato fruits.
Pyroligneous acid (PA) is a reddish-brown liquid obtained through the condensation of smoke formed during biochar production. PA contains bioactive compounds that can be utilized in agriculture to improve plant productivity and quality of edible parts. In this study, we investigated the biostimulatory effect of varying concentrations of PA (i.e., 0%, 0.25%, 0.5%, 1%, and 2% PA/ddH2O (v/v)) application on tomato (Solanum lycopersicum ‘Scotia’) plant growth and fruit quality under greenhouse conditions. Plants treated with 0.25% PA exhibited a significantly (p < 0.001) higher sub-stomatal CO2 concentration and a comparable leaf transpiration rate and stomatal conductance. The total number of fruits was significantly (p < 0.005) increased by approximately 65.6% and 34.4% following the application of 0.5% and 0.25% PA, respectively, compared to the control. The 0.5% PA enhanced the total weight of fruits by approximately 25.5%, while the 0.25% PA increased the elemental composition of the fruits. However, the highest PA concentration of 2% significantly (p > 0.05) reduced plant growth and yield, but significantly (p < 0.001) enhanced tomato fruit juice Brix, electrical conductivity, total dissolved solids, and titratable acidity. Additionally, total phenolic and flavonoid contents were significantly (p < 0.001) increased by the 2% PA. However, the highest carotenoid content was obtained with the 0.5% and 1% PA treatments. Additionally, PA treatment of the tomato plants resulted in a significantly (p < 0.001) high total ascorbate content, but reduced fruit peroxidase activity compared to the control. These indicate that PA can potentially be used as a biostimulant for a higher yield and nutritional quality of tomato.
Aluminum (Al) toxicity in acidic soils is a major constraint for seed germination and crop growth. Pyroligneous acid (PA) is rich in bioactive compounds that can enhance crop growth and tolerance to environmental stresses including toxic trace elements, but under studied. In this study, we investigated the effect of tomato (Solanum lycopersicum L. 'Scotia') seed priming with different rates of PA (i.e., 0, 0.5:100, 1:100, 1:300, 1:600, 1:900, 1:1200, and 2:100 PA/ddH2O (v/v)) on germination and seedling growth under different growing medium Al concentrations (i.e., 0, 0.5, and 1.25 mM aluminum chloride termed Al). The results showed that priming tomato seed with 2:100 PA for 24 hr significantly (p < 0.01) enhanced seed germination indices and seedling growth. PA significantly (p < 0.05) improved seed germination index and seedling vigor irrespective of the imposed Al stress compared to the control, but not seed germination percentage. Priming with PA also increased the total lengths and surface areas of seedling hypocotyls and roots, root volume, and seedling fresh weight. In most cases, seedling growth of both the control and the PA primed groups were not affected by the 0.5 mM Al. Additionally, hydrogen peroxide and malonaldehyde contents of seedlings were reduced while proline and soluble protein contents were significantly (p < 0.001) increased in PA primed seedlings compared to the control. Furthermore, PA-primed seedlings exhibited enhanced peroxidase (POD) activities, and relatively high expression of auxin response factor and antioxidant genes (i.e., glutathione reductase, POD, superoxide dismutase, catalase, and ascorbate peroxidase 1). These findings suggest that seed priming with PA can mitigates Al stress, and improve tomato seed germination and seedling growth via improving antioxidant defense system against Al-induced oxidative stress. Future studies will be required to investigate molecular mechanisms.
A combination of vermicast and sawdust mixed medium is commonly used in horticulture, but the added benefit of microbial inoculation and mechanism of nutrient availability are unknown. This study was done to determine nutrient mineralization and nutrient release patterns of different combinations or a mix of vermicast-sawdust growing media amended with or without Trichoderma viride (10 5 spores/g). The mixed-media treatments were (1) 80% vermicast+20% sawdust; (2) 60% vermicast+40% sawdust; (3) 40% vermicast+60% sawdust; (4) 20% vermicast+80% sawdust; and (5) sawdust alone (control). Total dissolved solids, electric conductivity and salinity increased with each sampling time following submergence in deionized. Nutrients released from media without T . viride were significantly higher than the corresponding media with added T . viride . Overall, the starting total nitrogen of the different media did not change during the incubation period, but nitrate-nitrogen was reduced to a negligible amount by the end of day 30 of incubation. A repeated measures analysis showed a significant effect of Time* T . viride *Treatment on total dissolved solids. Redundancy analysis demonstrated a positive and strong association between media composed of ≥40% vermicast and ≤60% sawdust with or without T . viride and mineral nutrients released, electrical conductivity, total dissolved solids and salinity. These findings suggest that fast-growing plants may benefit from 40% to 60% vermicast added to 40% to 60% sawdust without T . viride while slow-growing plants can benefit from the same mixed medium combined with the addition of T . viride . Further investigation is underway to assess microbial dynamics in the mixed media and their influence on plant growth.