Abstract Fermentation by microorganisms is a key step in the production of traditional food products such as bread, cheese, beer and wine. In these fermentative ecosystems, microorganisms interact in various ways, namely competition, predation, commensalism and mutualism. Traditional wine fermentation is a complex microbial process performed by Saccharomyces and non- Saccharomyces (NS) yeast species. To better understand the different interactions occurring within wine fermentation, isolated yeast cultures were compared with mixed co-cultures of one reference strain of S. cerevisiae with one strain of four NS yeast species ( Metschnikowia pulcherrima, M. fructicola, Hanseniaspora opuntiae and H. uvarum ). In each case, we studied population dynamics, resource consumed and metabolites produced from central carbon metabolism. This phenotyping of competition kinetics allowed us to confirm the main mechanisms of interaction between strains of four NS species. S. cerevisiae competed with H. uvarum and H. opuntiae for resources although both Hanseniaspora species were characterized by a strong mortality either in isolated or mixed fermentations. M. pulcherrima and M. fructicola displayed a negative interaction with the S. cerevisiae strain tested, with a decrease in viability in co-culture, probably due to iron depletion via the production of pulcherriminic acid. Overall, this work highlights the importance of measuring specific cell populations in mixed cultures and their metabolite kinetics to understand yeast-yeast interactions. These results are a first step towards ecological engineering and the rational design of optimal multi-species starter consortia using modeling tools. In particular the originality of this paper is for the first times to highlight the joint-effect of different species population dynamics on glycerol production and also to discuss on the putative role of lipid uptake on the limitation of some non-conventional species growth although interaction processes.
Finding plant cultivars that are resistant or tolerant against lepidopteran pests, takes time, effort and is costly. We present here a high throughput leaf-disk consumption assay system, to screen plants for resistance or chemicals for their deterrence. A webcam capturing images at regular intervals can follow the feeding activities of 150 larvae placed into individual cages. We developed a computer program running under an open source image analysis program to analyze and measure the surface of each leaf disk over time. We further developed new statistical procedures to analyze the time course of the feeding activities of the larvae and to compare them between treatments. As a test case, we compared how European corn borer larvae respond to a commercial antifeedant containing azadirachtin, and to quinine, which is a bitter alkaloid for many organisms. As expected, increasing doses of azadirachtin reduced and delayed feeding. However, quinine was poorly effective at the range of concentrations tested (10-5 M to 10-2 M). The model cage, the camera holder, the plugins, and the R scripts are freely available, and can be modified according to the users' needs.
Abstract. The analysis of the aa index series presented in this paper clearly shows that during the last century (1900 to 2000) the number of quiet days (Aa<20 nT) drastically diminished from a mean annual value greater than 270 days per year at the end of the nineteenth century to a mean value of 160 quiet days per year one hundred years later. This decrease is mainly due to the decrease of the number of very quiet days (Aa<13 nT). We show that the so-evidenced decrease in the number of quiet days cannot be accounted for by drift in the aa baseline resulting in a systematic underestimation of aa during the first quarter of the century: a 2–3 nT overestimation in the aa increase during the 20th century would lead to a 20–40% overestimation in the decrease of the number of quiet days during the same period. The quiet days and very quiet days correspond to periods during which the Earth encounters slow solar wind streams flowing in the heliosheet during the period where the solar magnetic field has a dipolar geometry. Therefore, the observed change in the number of quiet days is the signature of a long term evolution of the solar coronal field topology. It may be interpreted in terms of an increase in the magnitude of the solar dipole, the associated decrease of the heliosheet thickness accounting for the observed decrease in the number of quiet days.
Since the Neolithic time, until nowadays, humans have recurrently selected microbial community for making fermented food and beverage. This represents a good opportunity to study the community ecology and evolution of microbial ecosystem during ongoing domestication. Using sourdough bread as a model system and an interdisciplinary approach including bakers, farmers, sociologist, bio-mathematicians and biologists, we analyzed the impact of human on the diversity and evolution of microbial communities in France. Natural sourdough bread is made of wheat flour, water and sourdough. Sourdough is composed of flour, water, bacteria and fungi. Bakers initiate a new sourdough by mixing flour and water, and maintained it by regular feedings with flour and water, a process called back-slopping. Using a social survey of bread-making practices and a microbial ecologist approaches, we showed that bread-making practices impact sourdough microbial species diversity. Farmerbakers maintained different yeast species than bakers. In addition, we revealed convergent phenotypic evolution of sourdough strains of different yeast species for fermentation traits indicating that bakers have independently selected for phenotype of interest regardless of the yeast species. Finally, we realized an experiment of domestication in action by asking four bakers to initiate new sourdoughs with six different flours. The weekly followed up of sourdough species composition revealed that, for each baker, a single yeast and a single bacteria species dominated the community after 3 weeks of back-slopping. Despite the introduction of new bacteria and yeast from the flour at each back-slopping, the dominant species was the one present in the home sourdough indicating that dispersion and selection occurred mostly within the bakery. All together our study highlighted that domestication of microbial community can be a good model to bridge community ecology and evolution, to study the adaptation dynamic and the genetic architecture of fast evolving traits involved in abiotic and biotic interactions.
Understanding microbial dispersal is critical to understand the dynamics and evolution of microbial communities. However, microbial dispersal is difficult to study because of uncertainty about their vectors of migration. This applies to both microbial communities in natural and human-associated environments. Here, we studied microbial dispersal along the sourdoughs bread-making chain using a participatory research approach. Sourdough is a naturally fermented mixture of flour and water. It hosts a community of bacteria and yeasts whose origins are only partially known. We analysed the potential of wheat grains and flour to serve as an inoculum for sourdough microbial communities using 16S rDNA and ITS1 metabarcoding. First, in an experiment involving farmers, a miller and bakers, we followed the microbiota from grains to newly initiated and propagated sourdoughs. Second, we compared the microbiota of 46 sourdough samples collected everywhere in France, and of the flour used for their back-slopping. The core microbiota detected on the seeds, in the flour and in the sourdough was composed mainly of microbes known to be associated with plants and not living in sourdoughs. No sourdough yeast species were detected on grains and flours. Sourdough lactic acid bacteria were rarely found in flour. When they were, they did not have the same amplicon sequence variant (ASV) as found in the corresponding sourdough. However, the low sequencing depth for bacteria in flour did not allow us to draw definitive conclusion. Thus, our results showed that sourdough yeasts did not come from flour, and suggest that neither do sourdough LAB.