Investigations of the mechanisms of interactions between four non-conventional species withSaccharomyces cerevisiaein oenological conditions
3
Citation
34
Reference
10
Related Paper
Citation Trend
Abstract:
Abstract Fermentation by microorganisms is a key step in the production of traditional food products such as bread, cheese, beer and wine. In these fermentative ecosystems, microorganisms interact in various ways, namely competition, predation, commensalism and mutualism. Traditional wine fermentation is a complex microbial process performed by Saccharomyces and non- Saccharomyces (NS) yeast species. To better understand the different interactions occurring within wine fermentation, isolated yeast cultures were compared with mixed co-cultures of one reference strain of S. cerevisiae with one strain of four NS yeast species ( Metschnikowia pulcherrima, M. fructicola, Hanseniaspora opuntiae and H. uvarum ). In each case, we studied population dynamics, resource consumed and metabolites produced from central carbon metabolism. This phenotyping of competition kinetics allowed us to confirm the main mechanisms of interaction between strains of four NS species. S. cerevisiae competed with H. uvarum and H. opuntiae for resources although both Hanseniaspora species were characterized by a strong mortality either in isolated or mixed fermentations. M. pulcherrima and M. fructicola displayed a negative interaction with the S. cerevisiae strain tested, with a decrease in viability in co-culture, probably due to iron depletion via the production of pulcherriminic acid. Overall, this work highlights the importance of measuring specific cell populations in mixed cultures and their metabolite kinetics to understand yeast-yeast interactions. These results are a first step towards ecological engineering and the rational design of optimal multi-species starter consortia using modeling tools. In particular the originality of this paper is for the first times to highlight the joint-effect of different species population dynamics on glycerol production and also to discuss on the putative role of lipid uptake on the limitation of some non-conventional species growth although interaction processes.Keywords:
Torulaspora delbrueckii
Torulaspora delbrueckii
Cite
Citations (39)
Saccharomyces diastaticus KCTC 1804 균주와 Saccharomyces cerevisiae KOY-1 균주를 이용하여 전분분해활성과 알코올 발효능을 동시에 가지는 효모융합체를 개발하였다. Saccharomyces cerevisiae KOY-1 균주의 단수체 유도를 통하여 Saccharomyces cerevisiae KH-12 균주를 획득하였다. EMS를 사용한 돌연변이 유발을 통하여 Saccharomyces cerevisiae KH-12 균주의 Met 영양요구성 변이주를 획득하였다. Lyticase 처리로 Saccharomyces cerevisiae KOY-1 Met?), Saccharomyces diastaticus KCTC 1804(Trp?) 균주의 원형질체 형성률은 각각 90.5%, 97.7%로 관찰되었다. 원형질체 융합은 polyethylene glycol 4,000을 이용하여 실시하였고, 이때 원형질체 융합율은 1.79 × 10-4으로 관찰되었다. 원형질체융합과정을 통해 총 1,000주의 융합체를 획득하였고, 획득한 융합체의 전분분해능과 알코올발효능을 비교하여 최종적으로 전분배지 YPS24에서 알코올생성능이 가장 우수한 효모융합체인 FA 776을 최종 선발하였다. 최종 선발된 효모융합체 FA 776은 10세대 계대배양 후의 revertent 복귀율이 4.64%로 유전적 안정성을 확인하였으며, 효모융합체의 total DNA 함량을 비교한 결과, Saccharomyces cerevisiae 균주로부터 분리된 단수체 효모 KH-12는 26.56 fg/cll, Saccharomyces diastaticus KCTC 1804 균주는 25.40 fg/cell이었고, 이들을 사용해서 얻어진 융합체 FA 776의 DNA 함량은 42.67 fg/cell이었다. 전분배지 YPS24 배지에서 60시간 발효하였을때 Saccharomyces cerevisiae KOY-1 균주는 알코올 생성하지 못하였지만 효모융합체 FA 776은 13 mg/mL의 알코올을 생성하였다. 이는 전분이용성 효모인 Saccharomyces diastaticus KCTC 1804 균주에 비해 1.86배나 향상된 알코올 발효능을 나타냈다.
Cite
Citations (0)
The applied yeast strain contributes decisively to the aroma profile, taste, smell and mouth feel of the produced beer. The mass production of beer has led to a selection of a small number of high-performing Saccharomyces yeast strains. Besides the specially selected strains, there are many partly uncharacterized genera of yeast in addition to Saccharomyces, giving many possibilities for potential beer fermentation. Methods to predict the capability of non-Saccharomyces yeast strains with regard to beer fermentation as well as their potential use were successfully evaluated.
Torulaspora delbrueckii
Cite
Citations (1)
Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.
Winemaking
Torulaspora delbrueckii
Fermentation in winemaking
Cite
Citations (93)
ABSTRACT Sterols are essential components of the yeast membrane and their synthesis requires oxygen. Yet, Saccharomyces cerevisiae has developed the ability to take up sterols from the medium under anaerobiosis. Here we investigated sterol uptake efficiency and the expression of genes related to sterol import in Saccharomyces and non-Saccharomyces wine yeast species fermenting under anaerobic conditions. The sterol uptake efficiency of 39 strains was evaluated by flow cytometry (with 25-NBD Cholesterol, a fluorescent cholesterol probe introduced in the medium) and we found an important discrepancy between Saccharomyces and non-Saccharomyces wine yeast species that we correlated to a lower final cell population and a lower fermentation rate. A high uptake of sterol was observed in the various Saccharomyces strains. Spot tests performed on 13 of these strains confirmed the differences between Saccharomyces and non-Saccharomyces strains, suggesting that the presence of the sterol uptake transporters AUS1 and PDR11 could cause these discrepancies. Indeed, we could not find any homologue to these genes in the genome of Hanseniaspora uvarum, H. guillermondii, Lachancea thermotolerans, Torulaspora delbreueckii, Metschnikowia pulcherrima, or Starmarella bacillaris species. The specialization of sterol import function for post genome-duplication species may have favored growth under anaerobiosis.
Torulaspora delbrueckii
Cite
Citations (9)
The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris, and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine, or glutamine) were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae.
Ethanol Fermentation
Strain (injury)
Cite
Citations (130)
The use of non-Saccharomyces yeast species generally involves sequential or co-inoculation of a Saccharomyces cerevisiae strain to complete fermentation. While most studies have focused on characterising the impact that S. cerevisiae has on the growth and metabolic activity of these non-Saccharomyces species, microbial interactions work reciprocally. Antagonism or competition of non-Saccharomyces species against S. cerevisiae has been shown to impact subsequent fermentation performance. To date, it remains unclear whether these negative interactions are strain specific. Hence, characterisation of strain-specific responses to co-inoculation would enable the identification of specific S. cerevisiae strain/non-Saccharomyces combinations that minimise the negative impacts of sequential fermentation on fermentation performance. The competitive fitness response of 93 S. cerevisiae strains to several non-Saccharomyces species was simultaneously investigated using a barcoded library to address this knowledge gap. Strain-specific fitness differences were observed across non-Saccharomyces treatments. Results obtained from experiments using selected S. cerevisiae strains sequentially inoculated after Metschnikowia pulcherrima and Torulaspora delbrueckii were consistent with the competitive barcoded library observations. The results presented in this study indicate that strain selection will influence fermentation performance when using non-Saccharomyces species, therefore, appropriate strain/yeast combinations are required to optimise fermentation.
Torulaspora delbrueckii
Strain (injury)
Cite
Citations (14)
Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former.
Cite
Citations (734)
The relationships among 36 strains of 17 Saccharomyces species were studied by comparing ten enzymes electrophoretically. Twelve of the 13 strains of Saccharomyces cerevisiae tested produced rather similar patterns, but one distiller's yeast previously classified as Saccharomyces formosensis differed in fructose-1, 6-bisphosphate aldolase (EC 4.1.2.13). Three Saccharomyces uvarum strains split into two categories with quite different enzyme patterns. One included strains previously named Saccharomyces carlsbergensis and was similar to S. cerevisiae in itsenzyme patterns. The electrophoretic patterns of S. cerevisiae, S. bayanus, S. chevalieri, S. diastaticus, and S. italicus were nearly identical. Strains of Saccharomyces delbrueckii, S. fermentati, S. rosei, and S. saitoanus, belonging to the so-called Torulaspora group, had similar electrophoretic patterns which were readily distinguishable from those of S. cerevisiae. The patterns of Saccharomyces bailii, S. bisporus, S. florentinus, and S. rouxii, belonging to the so-called Zygosaccharomyces group, differed from each other and from the S. cerevisiae and Torulaspora strains.
Torulaspora delbrueckii
Cite
Citations (15)
Torulaspora delbrueckii
Ethanol Fermentation
Cite
Citations (25)