The VEGA balloons made in situ measurements of pressure, temperature, vertical wind velocity, ambient light, frequency of lightning, and cloud particle backscatter. Both balloons encountered highly variable atmospheric conditions, with periods of intense vertical winds occurring sporadically throughout their flights. Downward winds as large as 3.5 meters per second occasionally forced the balloons to descend as much as 2.5 kilometers below their equilibrium float altitudes. Large variations, in pressure, temperature, ambient light level, and cloud particle backscatter (VEGA-1 only) correlated well during these excursions, indicating that these properties were strong functions of altitude in those parts of the middle cloud layer sampled by the balloons.
The evolution of ozone observed by UARS MLS in the Northern Hemisphere polar vortex is shown as a function of time throughout the stratosphere, for the 1991-1992 and 1992-1993 winters.
Fourier analysis has been applied to data obtained from limb viewing instruments on the Upper Atmosphere Research Satellite. A coordinate system rotation facilitates the efficient computation of Fourier transforms in the temporal and longitudinal domains. Fields such as ozone (O 3 ), chlorine monoxide (ClO), temperature, and water vapor have been transformed by this process. The transforms have been inverted to provide maps of these quantities at selected times, providing a method of accurate time interpolation. Maps obtained by this process show evidence of both horizontal and vertical transport of important trace species such as O 3 and ClO. An examination of the polar regions indicates that large‐scale planetary variations are likely to play a significant role in transporting midstratospheric O 3 into the polar regions. There is also evidence that downward transport occurs, providing a means of moving O 3 into the polar vortex at lower altitudes. The transforms themselves show the structure and propagation characteristics of wave variations.
Satellite observations of ozone and chlorine monoxide in the Arctic lower stratosphere during winter 1992-1993 are compared with observations during other winters, observations of long-lived tracers and the evolution of the polar vortex. Chlorine in the lower stratospheric vortex during February 1993 was mostly in chemically reactive forms.
Viewgraphs on a distributed system for visualizing and analyzing multivariate and multidisciplinary data are presented. Topics covered include: program objectives; and the linked windows interactive data system (LinkWinds).
Global ozone observations from the Microwave Limb Sounder (MLS) aboard the Upper Atmosphere Research Satellite (UARS) are presented, in both vertically resolved and column abundance formats. The authors review the zonal-mean ozone variations measured over the two and a half years since launch in September 1991. Well-known features such as the annual and semiannual variations are ubiquitous. In the equatorial regions, longerterm changes are believed to be related to the quasi-biennial oscillation (QBO), with a strong semiannual signal above 20 hPa. Ozone values near 50 hPa exhibit an equatorial low from October 1991 to June 1992, after which the low ozone pattern splits into two subtropical lows (possibly in connection with residual circulation changes tied to the QBO) and returns to an equatorial low in September 1993. The ozone hole development at high southern latitudes is apparent in MLS column data integrated down to 100 hPa, with a pattern generally consistent with Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) measurements of total column; the MLS data reinforce current knowledge of this lower-stratospheric phenomenon by providing a height-dependent view of the variations. The region from 30°S to 30°N (an area equal to half the global area) shows very little change in the ozone column from year to year and within each year. The most striking ozone changes have occurred at northern midlatitudes, with the October 1992 to July 1993 column values significantly lower than during the prior year. The zonal-mean changes manifest themselves as a slower rate of increase during the 1992/93 winter, and there is some evidence for a lower fall minimum. A recovery occurs during late summer of 1993; early 1994 values are significantly larger than during the two previous winters. These results are in general agreement with variations measured by the Nimbus-7 TOMS and Meteor-3 TOMS instruments at midlatitudes. However, the southern midlatitudes exhibit less of a column ozone decrease (relative to the north) in the MLS data (down to 100 hPa) than in the TOMS column results. The timing and latitudinal extent of the northern midlatitude decreases appear to rule out observed CIO enhancements in the Arctic vortex, with related chemical processing and ozone dilution effects, as a unique cause. Local depletion from CIO-related chemical mechanisms alone is also not sufficient, based on MLS CIO data. The puzzling asymmetric nature of the changes probably requires a dynamical component as an explanation. A combination of effects (including chemical destruction via heterogeneous processes and QBO phasing) apparently needs to be invoked. This dataset will place constraints on future modeling studies, which are required to better understand the source of the observed changes. Finally, residual ozone values extracted from TOMS-minus-MLS column data are briefly presented as a preliminary view into the potential usefulness of such studies, with information on tropospheric ozone as an ultimate goal.
The evidence and interpretations pertaining to the surface phase composition of Io and the mechanisms by which Io's surface influences its atmosphere are discussed. The mechanism by which Io's surface and/or atmosphere supplies neutral and ionic species to the region around the satellite and ultimately to the Jovian magnetosphere is also discussed. A model is suggested in which the global SO2 gas abundance is primarily controlled by buffering in the brightest, coldest regions. The net SO2 flux across the disk is limited by regional cold trapping on high albedo regions and possibly by the resistance of a tenuous non-SO2 residual atmosphere. The continuing migration of SO2 toward cooler regions and those lacking SO2 sources is opposed by SO2 destruction and planetary ejection processes, including sputtering, thus preventing buildup of thick, ubiquitous SO2 coverage.
Abstract A primitive equation, solar driven, thermospheric model is derived which has applications to the neutral gas components on Mars and Venus. The full effects of molecular viscosity and thermal conductivity are included, necessitating the development of a combined analytic and numerical solution technique. The model is applied to Venus in order to understand how thermospheric rotation, if present, would affect the dynamics. Results indicate that rotation periods of eight days or less should be observable. Application of the model to Mars indicates that the perturbation solar heating and the atmospheric response have primarily a diurnal component for which typical temperature and zonal wind maximum amplitudes are 20 K and 30 m/sec respectively. Because of uncertainty in the solar heating efficiency, calculations were made varying this parameter by an order of magnitude. The results imply that the response due to solar forcing alone is probably too small to account for observed concentrations of the minor constituents CO and O. An upper limit estimate is made of the upward propagation of wave energy from the lower atmosphere and the resulting response of the thermosphere.