logo
    The relatively weak mechanical properties of hydrogels remain a major drawback for their application as load-bearing tissue scaffolds. Previously, we developed cell-laden double-network (DN) hydrogels that were composed of photocrosslinkable gellan gum (GG) and gelatin. Further research into the materials as tissue scaffolds determined that the strength of the DN hydrogels decreased when they were prepared at cell-compatible conditions, and the encapsulated cells in the DN hydrogels did not function as well as they did in gelatin hydrogels. In this work, we developed microgel-reinforced (MR) hydrogels from the same two polymers, which have better mechanical strength and biological properties in comparison to the DN hydrogels. The MR hydrogels were prepared by incorporating stiff GG microgels into soft and ductile gelatin hydrogels. The MR hydrogels prepared at cell-compatible conditions exhibited higher strength than the DN hydrogels and the gelatin hydrogels, the highest strength being 2.8 times that of the gelatin hydrogels. MC3T3-E1 preosteoblasts encapsulated in MR hydrogels exhibited as high metabolic activity as in gelatin hydrogels, which is significantly higher than that in the DN hydrogels. The measurement of alkaline phosphatase (ALP) activity and the amount of mineralization showed that osteogenic behavior of MC3T3-E1 cells was as much facilitated in the MR hydrogels as in the gelatin hydrogels, while it was not as much facilitated in the DN hydrogels. These results suggest that the MR hydrogels could be a better alternative to the DN hydrogels and have great potential as load-bearing tissue scaffolds.
    Gelatin
    Gellan gum
    Citations (52)
    Research on hydrogels has been geared toward biomedical applications from the beginning due to their relatively high biocompatibility. Initially only the hydrophilic nature and the large swelling properties of hydrogels was explored. Continued research on hydrogels has resulted in the development of new types of hydrogels, such as environment-sensitive hydrogels, thermoplastic hydrogels, hydrogel foams, and sol-gel phase-reversible hydrogels. Application of hydrogels ranges from biomedical devices to solute separation. Examples of hydrogel applications in pharmaceutics, biomaterials, and biotechnology are briefly described.
    Biocompatibility
    Pharmaceutics
    Citations (74)
    The relatively weak mechanical properties of hydrogels remain a major drawback for their application as load-bearing tissue scaffolds. Previously, we developed cell-laden double-network (DN) hydrogels that were composed of photocrosslinkable gellan gum (GG) and gelatin. Further research into the materials as tissue scaffolds determined that the strength of the DN hydrogels decreased when they were prepared at cell-compatible conditions, and the encapsulated cells in the DN hydrogels did not function as well as they did in gelatin hydrogels. In this work, we developed microgel-reinforced (MR) hydrogels from the same two polymers, which have better mechanical strength and biological properties in comparison to the DN hydrogels. The MR hydrogels were prepared by incorporating stiff GG microgels into soft and ductile gelatin hydrogels. The MR hydrogels prepared at cell-compatible conditions exhibited higher strength than the DN hydrogels and the gelatin hydrogels, the highest strength being 2.8 times that of the gelatin hydrogels. MC3T3-E1 preosteoblasts encapsulated in MR hydrogels exhibited as high metabolic activity as in gelatin hydrogels, which is significantly higher than that in the DN hydrogels. The measurement of alkaline phosphatase (ALP) activity and the amount of mineralization showed that osteogenic behavior of MC3T3-E1 cells was as much facilitated in the MR hydrogels as in the gelatin hydrogels, while it was not as much facilitated in the DN hydrogels. These results suggest that the MR hydrogels could be a better alternative to the DN hydrogels and have great potential as load-bearing tissue scaffolds.
    Gelatin
    Gellan gum
    Citations (0)
    Research on hydrogels has been geared toward biomedical applications from the beginning due to their relatively high biocompatibility. Initially only the hydrophilic nature and the large swelling properties of hydrogels was explored. Continued research on hydrogels has resulted in the development of new types of hydrogels, such as environment-sensitive hydrogels, thermoplastic hydrogels, hydrogel foams, and sol-gel phase-reversible hydrogels. Application of hydrogels ranges from biomedical devices to solute separation. Examples of hydrogel applications in pharmaceutics, biomaterials, and biotechnology are briefly described.
    Pharmaceutics
    Biocompatibility
    Citations (196)
    Бұл зерттеужұмысындaКaно моделітурaлы жәнеоғaн қaтыстытолықмәліметберілгенжәнеуниверситетстуденттерінебaғыттaлғaн қолдaнбaлы (кейстік)зерттеужүргізілген.АхметЯссaуи университетініңстуденттеріүшін Кaно моделіқолдaнылғaн, олaрдың жоғaры білімберусaпaсынa қоятынмaңыздытaлaптaры, яғнисaпaлық қaжеттіліктері,олaрдың мaңыздылығытурaлы жәнесaпaлық қaжеттіліктерінеқaтыстыөз университетінқaлaй бaғaлaйтындығытурaлы сұрaқтaр қойылғaн. Осы зерттеудіңмaқсaты АхметЯсaуи университетіндетуризмменеджментіжәнеқaржы бaкaлaвриaт бaғдaрлaмaлaрыныңсaпaсынa қaтыстыстуденттердіңқaжеттіліктерінaнықтaу, студенттердіңқaнaғaттaну, қaнaғaттaнбaу дәрежелерінбелгілеу,білімберусaпaсын aнықтaу мен жетілдіружолдaрын тaлдaу болыптaбылaды. Осы мaқсaтқaжетуүшін, ең aлдыменКaно сaуaлнaмaсы түзіліп,116 студенткеқолдaнылдыжәнебілімберугежәнеоның сaпaсынa қaтыстыстуденттердіңтaлaптaры мен қaжеттіліктерітоптықжұмыстaрaрқылыaнықтaлды. Екіншіден,бұл aнықтaлғaн тaлaптaр мен қaжеттіліктерКaно бaғaлaу кестесіменжіктелді.Осылaйшa, сaпa тaлaптaры төрт сaнaтқa бөлінді:болуытиіс, бір өлшемді,тaртымдыжәнебейтaрaп.Соңындa,қaнaғaттaну мен қaнaғaттaнбaудың мәндеріесептелдіжәнестуденттердіңқaнaғaттaну мен қaнaғaттaнбaу деңгейлерінжоғaрылaту мен төмендетудеосытaлaптaр мен қaжеттіліктердіңрөліaйқын aнықтaлды.Түйінсөздер:сaпa, сaпaлық қaжеттіліктер,білімберусaпaсы, Кaно моделі.
    Citations (0)
    The nationally-recognized Susquehanna Chorale will delight audiences of all ages with a diverse mix of classic and contemporary pieces. The ChoraleAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚™s performances have been described as AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚œemotionally unfiltered, honest music making, successful in their aim to make the audience feel, to be moved, to be part of the performance - and all this while working at an extremely high musical level.AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ Experience choral singing that will take you to new heights!
    Citations (0)