logo
    Combating Obesity: Harnessing the Synergy of Postbiotics and Prebiotics for Enhanced Lipid Excretion and Microbiota Regulation
    4
    Citation
    46
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Obesity is a chronic metabolic disease that can be induced by a high-fat diet (HFD) and predisposes to a variety of complications. In recent years, various bioactive substances, such as probiotics, prebiotics, and postbiotics, have been widely discussed because of their good anti-lipid and anti-inflammatory activities. In this paper, soybean protein isolate was used as a substrate to prepare the postbiotic. Compound prebiotics (galactose oligosaccharides, fructose oligosaccharides, and lactitol) preparation Aunulife Postbiotics and Prebiotics Composition (AYS) is the research object. Weight loss and bowel movements in mice induced by a high-fat diet were studied. Moreover, qualitative and quantitative analyses of small-molecule metabolites in AYS were performed to identify the functional molecules in AYS. After 12 weeks of feeding, the weight gain of mice that were fed with high-dose AYS (group H) and low-dose AYS (group L) from 4 to 12 weeks was 6.72 g and 5.25 g (p < 0.05), both of which were significantly lower than that of the high-fat diet (group DM, control group) group (7.73 g) (p < 0.05). Serum biochemical analysis showed that TC, TG, and LDL-C levels were significantly lower in mice from the H and L groups (p < 0.05). In addition, the fecal lipid content of mice in the L group reached 5.89%, which was significantly higher than that of the DM group at 4.02% (p < 0.05). The study showed that AYS changed the structure of the intestinal microbiota in mice on a high-fat diet, resulting in a decrease in the relative abundance of Firmicutes and Muribaculaceae and an increase in the relative abundance of Bacteroidetes, Verrucomicrobia, and Lactobacillus. The metabolomics study results of AYS showed that carboxylic acids and derivatives, and organonitrogen compounds accounted for 51.51% of the AYS metabolites, among which pantothenate, stachyose, betaine, and citrate had the effect of preventing obesity in mice. In conclusion, the administration of prebiotics and postbiotic-rich AYS reduces weight gain and increases fecal lipid defecation in obese mice, potentially by regulating the intestinal microbiota of mice on a high-fat diet.
    Branched-chain fatty acids (BCFA) have recently been reported to play a role in human gut health during early life. However, little information is available on the fecal BCFA profiles in young ruminants and whether they are associated with the development of neonatal calf diarrhea. The objectives of this study were to (1) characterize BCFA profiles in feces collected from young calves, (2) compare the fecal BCFA composition between diarrheic and nondiarrheic dairy calves, and (3) explore the potential relationships between BCFA and microbiota in the feces. A total of 32 male Holstein dairy calves (13 ± 3 d old) with the same diet management were grouped as diarrheic (n = 16) or healthy (n = 16) based on fecal score (determined by liquid fecal consistency with some solid particles); diarrhea cases were defined as fecal score ≥2 for at least 2 d. Fecal samples were collected on the seventh day after calf arrival, and the fecal BCFA and microbial profiles were assessed using gas chromatograph and amplicon sequencing, respectively. In total, 7 BCFA were detected in the feces of all dairy calves; however, the concentrations of fecal BCFA differed between diarrheic and nondiarrheic calves. Specifically, the concentrations of iso-C16:0, iso-C17:0, anteiso-C17:0, and total even-chain BCFA were significantly higher in the feces of diarrheic calves. When the associations between BCFA and bacteria were studied, the relative abundance of Eggerthella was positively correlated with the concentrations of iso-C16:0 (ρ = 0.67), iso-17:0 (ρ = 0.77), anteiso-C17:0 (ρ = 0.73), and iso-C18:0 (ρ = 0.65), whereas the relative abundance of Subdoligranulum was positively correlated with the concentrations of iso-C14:0 (ρ = 0.62), iso-C15:0 (ρ = 0.78), and anteiso-C15:0 (ρ = 0.63). Use of random forest algorithm showed that BCFA such as anteiso-C15:0, iso-C16:0, iso-C17:0, iso-C18:0, and total even-chain BCFA could be used as biomarkers to differentiate diarrheic calves from healthy ones. Our findings generated fundamental knowledge on the potential roles of BCFA in neonatal calf gut health. Follow-up studies with larger animal populations are warranted to validate the feasibility of using BCFA as indicators of health status in neonatal calves.
    Citations (25)
    Fecal egg counts often are used for diagnosing equine strongyle infections and estimating the number of eggs shed in the feces. An individual egg count should be interpreted in view of the normal fluctuation of egg numbers in an individual horse. In this study, the daily variability of strongyle fecal egg counts from horses was investigated. The Cornell-McMaster egg-counting technique was used to estimate the eggs per gram of feces in repeated daily fecal samples from 39 horses. The variation of the daily egg counts across 4 days was greater than would be expected if a consistent number of eggs were produced and dispersed randomly in the feces. The means and variances of the daily counts from each horse had a logarithmic relationship. For practical purposes, however, the fluctuation of egg counts is low enough for the fecal egg count to be used to identify horses for treatment, to estimate pasture contamination, or to assess response to therapy.
    Eggs per gram
    Citations (19)
    Dysregulated lipid metabolism is a key pathology in metabolic diseases and the liver is a critical organ for lipid metabolism. The gut microbiota has been shown to regulate hepatic lipid metabolism in the host. However, the underlying mechanism by which the gut microbiota influences hepatic lipid metabolism has not been elucidated. Here, a gut microbiota depletion mouse model was constructed with an antibiotics cocktail (Abx) to study the mechanism through which intestinal microbiota regulates hepatic lipid metabolism in high-fat diet (HFD)-fed mice. Our results showed that the Abx treatment effectively eradicated the gut microbiota in these mice. Microbiota depletion reduced the body weight and fat deposition both in white adipose tissue and liver. In addition, microbiota depletion reduced serum levels of glucose, total cholesterol (TC), low-density lipoproteins (LDL), insulin, and leptin in HFD-fed mice. Importantly, the depletion of gut microbiota in HFD-fed mice inhibited excessive hepatic lipid accumulation. Mechanistically, RNA-seq results revealed that gut microbiota depletion changed the expression of hepatic genes involved in cholesterol and fatty acid metabolism, such as Cd36, Mogat1, Cyp39a1, Abcc3, and Gpat3. Moreover, gut microbiota depletion reduced the abundance of bacteria associated with abnormal metabolism and inflammation, including Lachnospiraceae, Coriobacteriaceae_UCG-002, Enterorhabdus, Faecalibaculum, and Desulfovibrio. Correlation analysis showed that there was strong association between the altered gut microbiota abundance and the serum cholesterol level. This study indicates that gut microbiota ameliorates HFD-induced hepatic lipid metabolic dysfunction, which might be associated with genes participating in cholesterol and fatty acid metabolism in the liver.
    Lachnospiraceae
    Steatosis
    Citations (32)
    The rabbit is a representative animal species that conducts coprophagy, i. e. the production and reingestion of soft feces. We, however, encountered a maternal rabbit eating its own hard feces. A detailed investigation was performed on coprophagy in the rabbit to elucidate whether rabbits actually reingest their own hard feces. It was found that young adult Japanese White rabbits reingested their hard, as well as soft, feces directly from the anus. It has been reported that rabbits reingest only soft feces because of their high nutritive content, but the present study demonstrates that rabbits also reingest their hard feces despite their low nutritive content. It seems possible that coprophagy may be initiated by the colonic or rectal wall expanding effects of the fecal material itself.
    Anus
    体重2~3kgの日本白色種の雄ウサギに盲腸切離手術を施し, 手術後1年間生存させることが出来た. 盲腸切離ウサギは手術後20日ころより飼料の摂取を始め, 摂取量は徐々に増加した. 体重は, 手術後20日間位は飼料を摂取しないためにかなり減少したが, 飼料摂取量が増加するに従い増加がみられ, ほぼ手術時の体重まで回復した. 排糞状態については, 盲腸切離ウサギはhard fecesおよびsoft fecesのほかに無定形の中間型の糞を排泄した. 成分組成は, hard fecesおよびsoft fecesについては手術を施していないウサギのそれらと近似し, 中間型のものはhard fecesとsoft fecesのほぼ中間であった. また, 食糞許可時には, 盲腸切離ウサギはhard feces州みを排泄した。一方, 塩酸不溶性灰分を指標として求めた見かけの消化率は, 盲腸切離手術により, 乾物, 粗繊維, 灰分, NFEについて低下が認められ, 特に粗繊維が顕著であった.
    Cecum
    Citations (1)
    Obesity, a chronic metabolic disorder caused by an energy imbalance, has been increasingly prevalent and poses a global health concern. The multifactorial etiology of obesity includes genetics factors, high-fat diet, gut microbiota, and other factors. Among these factors, the implication of gut microbiota in the pathogenesis of obesity has been prominently acknowledged. This study endeavors to investigate the potential contribution of gut microbiota to the development of high-fat diet induced obesity, as well as the current state of probiotic intervention therapy research, in order to provide novel insights for the prevention and management of obesity.
    Etiology
    Management of obesity
    Pathogenesis
    Citations (21)