Additional file 6 of Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes
Francisco Avila CobosMohammad Javad Najaf PanahJ ElswoodXiaochen LongTsz‐Kwong ManHua‐Sheng ChiuElad ChomskyEvgeny KinerMichael KruegerDiego di BernardoLuis VolochJan J. MolenaarSander R. van HooffFrank WestermannSelina JanskyMichele S. RedellPieter MestdaghPavel Sumazin
0
Citation
0
Reference
10
Related Paper
Abstract:
Additional file 6: Table S5. Predicted abundance and clinical annotations of pediatric AML and neuroblastoma TARGET patients that were used to evaluate the outcomes-predictive value of subclone abundances in diagnostic samples.Keywords:
RNA-Seq
Supplementary Table 5 from Characterizing the Impact of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq
RNA-Seq
Table (database)
Cite
Citations (0)
Supplementary Table 3 from Characterizing the Impact of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq
RNA-Seq
Table (database)
Cite
Citations (0)
Supplementary Table 7 from Characterizing the Impact of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq
RNA-Seq
Table (database)
Cite
Citations (0)
Supplementary Table 4 from Characterizing the Impact of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq
RNA-Seq
Table (database)
Cite
Citations (0)
Supplementary Table 4 from Characterizing the Impact of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq
RNA-Seq
Table (database)
Cite
Citations (0)
Supplementary Table 1 from Characterizing the Impact of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq
RNA-Seq
Table (database)
Cite
Citations (0)
RNA-Seq
Identification
Plant Physiology
Cite
Citations (3)
Supplementary Table 10 from Characterizing the Impact of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq
RNA-Seq
Table (database)
Cite
Citations (0)
Additional file 2. Mouse MII oocyte-specific expressed gene list.
RNA-Seq
Cite
Citations (0)
Additional file 1: Table S1. RNA-seq datasets from both public databases and in house unpublished data. Table S2. StringTie Parameters used in the different assemblies (sorted by transcript number). Table S3. Mean proportions of alternatively spliced products by HR-RT-PCR analyisis. Table S4. Correlation of HR RT-PCR data with BaRTv1.0, BaRTv1.0- QUASI and HORVU transcripts. Table S5. Splice Junctions and intron lengths. Table S6. Differentially expressed gene clusters and differential transcript usage gene clusters. Table S7. Pairwise significant changes in alternatively spliced transcripts detected by HR RT-PCR between different organs.
RNA-Seq
Cite
Citations (0)