Inflammation-controlled anti-inflammatory hydrogels
Tina HelmeckeDominik HahnNadine MatzkeLisa FerdinandLars FrankeSebastian KühnGünter FischerCarsten WernerManfred F. Maitz
1
Citation
0
Reference
10
Related Paper
Citation Trend
Abstract:
Dataset to the publication Inflammation-controlled anti-inflammatory hydrogels Tina Helmecke, Dominik Hahn, Nadine Matzke, Lisa Ferdinand, Lars Franke, Sebastian Kühn, Gunter Fischer, Carsten Werner, Manfred F. Maitz Advanced Science 2022, 2206412. https://doi.org/10.1002/advs.202206412The relatively weak mechanical properties of hydrogels remain a major drawback for their application as load-bearing tissue scaffolds. Previously, we developed cell-laden double-network (DN) hydrogels that were composed of photocrosslinkable gellan gum (GG) and gelatin. Further research into the materials as tissue scaffolds determined that the strength of the DN hydrogels decreased when they were prepared at cell-compatible conditions, and the encapsulated cells in the DN hydrogels did not function as well as they did in gelatin hydrogels. In this work, we developed microgel-reinforced (MR) hydrogels from the same two polymers, which have better mechanical strength and biological properties in comparison to the DN hydrogels. The MR hydrogels were prepared by incorporating stiff GG microgels into soft and ductile gelatin hydrogels. The MR hydrogels prepared at cell-compatible conditions exhibited higher strength than the DN hydrogels and the gelatin hydrogels, the highest strength being 2.8 times that of the gelatin hydrogels. MC3T3-E1 preosteoblasts encapsulated in MR hydrogels exhibited as high metabolic activity as in gelatin hydrogels, which is significantly higher than that in the DN hydrogels. The measurement of alkaline phosphatase (ALP) activity and the amount of mineralization showed that osteogenic behavior of MC3T3-E1 cells was as much facilitated in the MR hydrogels as in the gelatin hydrogels, while it was not as much facilitated in the DN hydrogels. These results suggest that the MR hydrogels could be a better alternative to the DN hydrogels and have great potential as load-bearing tissue scaffolds.
Gelatin
Gellan gum
Cite
Citations (52)
This minireview discusses the advantages and challenges in constructing bioinspired double-network hydrogels mimicking the structure and/or properties of biological tissue.
Network Structure
Cite
Citations (360)
Research on hydrogels has been geared toward biomedical applications from the beginning due to their relatively high biocompatibility. Initially only the hydrophilic nature and the large swelling properties of hydrogels was explored. Continued research on hydrogels has resulted in the development of new types of hydrogels, such as environment-sensitive hydrogels, thermoplastic hydrogels, hydrogel foams, and sol-gel phase-reversible hydrogels. Application of hydrogels ranges from biomedical devices to solute separation. Examples of hydrogel applications in pharmaceutics, biomaterials, and biotechnology are briefly described.
Biocompatibility
Pharmaceutics
Cite
Citations (74)
Biocompatible material
Natural polymers
Cite
Citations (14)
Cite
Citations (0)
Cite
Citations (3)
The relatively weak mechanical properties of hydrogels remain a major drawback for their application as load-bearing tissue scaffolds. Previously, we developed cell-laden double-network (DN) hydrogels that were composed of photocrosslinkable gellan gum (GG) and gelatin. Further research into the materials as tissue scaffolds determined that the strength of the DN hydrogels decreased when they were prepared at cell-compatible conditions, and the encapsulated cells in the DN hydrogels did not function as well as they did in gelatin hydrogels. In this work, we developed microgel-reinforced (MR) hydrogels from the same two polymers, which have better mechanical strength and biological properties in comparison to the DN hydrogels. The MR hydrogels were prepared by incorporating stiff GG microgels into soft and ductile gelatin hydrogels. The MR hydrogels prepared at cell-compatible conditions exhibited higher strength than the DN hydrogels and the gelatin hydrogels, the highest strength being 2.8 times that of the gelatin hydrogels. MC3T3-E1 preosteoblasts encapsulated in MR hydrogels exhibited as high metabolic activity as in gelatin hydrogels, which is significantly higher than that in the DN hydrogels. The measurement of alkaline phosphatase (ALP) activity and the amount of mineralization showed that osteogenic behavior of MC3T3-E1 cells was as much facilitated in the MR hydrogels as in the gelatin hydrogels, while it was not as much facilitated in the DN hydrogels. These results suggest that the MR hydrogels could be a better alternative to the DN hydrogels and have great potential as load-bearing tissue scaffolds.
Gelatin
Gellan gum
Cite
Citations (0)
Research on hydrogels has been geared toward biomedical applications from the beginning due to their relatively high biocompatibility. Initially only the hydrophilic nature and the large swelling properties of hydrogels was explored. Continued research on hydrogels has resulted in the development of new types of hydrogels, such as environment-sensitive hydrogels, thermoplastic hydrogels, hydrogel foams, and sol-gel phase-reversible hydrogels. Application of hydrogels ranges from biomedical devices to solute separation. Examples of hydrogel applications in pharmaceutics, biomaterials, and biotechnology are briefly described.
Pharmaceutics
Biocompatibility
Cite
Citations (196)
Hydrogels are there-dimensional polymer network in which the voids are filled with water.Hydrogels have been widely used in various fields including biomedical engineering.However,they have very limited applicability due to their poor mechanical strength.Therefore,many efforts have been focused on the enhancement of mechanical properties of hydrogels.This review mainly introduces some novel high strength hydrogels,such as slide-ring hydrogels,double network hydrogels,composite hydrogels and others and analyzes the factors affecting mechanical properties of hydrogels.Biocompatible,degradable,injectable,loading growth factor and high strength hydrogels as major research directions.
Mechanical strength
Biocompatible material
Cite
Citations (0)