logo
    Technical design report for the endcap disc DIRC *
    Fabrizio Davı́W. ErniB. KruscheM. SteinacherN. K. WalfordH LiuZ LiuB LiuX. ShenC. WangJ. ZhaoM. AlbrechtT. ErlenF. FeldbauerMartin FinkV. FreudenreichM. FritschF. H. HeinsiusT. HeldT. HoltmannI. KeshkH. KochB. KopfM. KuhlmannM. KümmelS. LeiberP. MusiolA. MustafaM. PelizäusA. PitkaG. ReicherzM. RichterC. SchnierT. SchröderS SersinL. SohlC. SowaM. SteinkeT. TrifftererU. WiednerR. BeckCh. HammannJ. HartmannB. KetzerM. KubeM. RossbachC. SchmidtR. SchmitzU. ThomaM. UrbanA. BianconiM. BragadireanuD. PanteaWojciech CzyżyckiMariusz DomagałaGrzegorz FiloJ. JaworowskiM. KrawczykE. LisowskiFilip LisowskiM MichałkJ. PłażekK. KorcylA. KozelaP. KulessaPiotr LebiedowiczK. PyszWolfgang SchäferAntoni SzczurekT. FiutowskiM. IdzikB. MindurK. ŚwientekJ. BiernatB. KamysSt. KistrynG. KorcylW. KrzemieńA. MagieraP. MoskalWitold Wojciech PrzygodaZ. RudyP. SalaburaJ. SmyrskiP. StrzempekA. WrońskaI. AugustinR. BöhmI. LehmannD. Nicmorus MarinescuL. SchmittV. VarentsovM. Al-TuranyA. BeliasH. DeppeNazila Divani VeisR. DzhygadloH. FlemmingA. GerhardtK. GötzenR. KarabowiczU. KurillaD. LehmannS. LöchnerJ. LühningU. LynenS. NakhoulH. OrthΚ. PetersT. SaitoG. SchepersC. J. SchmidtChristopher G. SchwarzJ. SchwieningA. TäschnerM. TraxlerB. VossP. WieczorekA. WilmsV. M. AbazovG. D. AlexeevV. A. ArefievV. AstakhovM. Yu. BarabanovB. BatyunyaV.Kh. DodokhovA. EfremovA. FechtchenkoA. GaloyanG. GolovanovE. K. KoshurnikovYu. Yu. LobanovV.I. LobanovV. L. MalyshevA. OlshevskiyA. A. PiskunA. G. SamartsevM.G. SapozhnikovN. B. SkachkovA. N. SkachkovaE. A. StrokovskyV. V. TokmeninV. UzhinskyA. VerkheevA.S. VodopianovN.I. ZhuravlevA. ZinchenkoD. BranfordD. I. GlazierD. P. WattsM. BöhmW. EyrichA. LehmannD. MiehlingM. PfaffingerS. StelterF. UhligS. DobbsK. K. SethA. TomaradzeTing XiaoD. BettoniA. B. M. Shawkat AliA. HamdiM. KrebsF. NerlingValentina AkishinaS. GorbunovI. KiselG. KozlovMegan K. PugachM. ZyzakN. BianchiP. GianottiC. GuaraldoV. LucheriniG. BraccoS. BodenschatzKai-Thomas BrinkmannV. Di PietroS. DiehlV. DormenevM. DürenE. EtzelmüllerK. FöhlM. GaluskaThomas GeßlerE. GutzC. HahnAram HayrapetyanM. KesselkaulW. KühnTill KuskeJ. S. LangeY. T. LiangO. MerleV. MetagM. MoritzM. NanovaR. NovotnyT. QuagliAlberto RiccardiJ. RiekeM. A. SchmidtR. SchnellH. StenzelMarc StrickertU. ThöringT. WasemB. WohlfahrtH.-G. ZaunickE. Tomasi‐GustafssonD. G. IrelandG. RosnerB. SeitzP. N. DeepakA. KulkarniA. ApostolouM. BabaiM. KavatsyukH. LoehnerJ. G. MesschendorpP. SchakelM. TiemensJ. C. van der WeeleS. VejdaniK. DuttaK. KalitaH. SohlbachM. BaiL. BianchiM. BüscherA. DerichsR. DosdallA. ErvenV. FracassiA. GillitzerF. GoldenbaumD. GrunwaldL. JokhovetsG. KemmerlingH. KleinesA. LaiA. LehrachM. MikirtychyantsS. OrfanitskiD. PrasuhnE. PrencipeJ. PützJ. RitmanEberhard RosenthalS. SchadmandT. SefzickV. SerdyukG. SterzenbachT. StockmannsP. WintzP. WüstnerH.H. XuY. ZhouZ. LiX. MaH.H. XuV. RigatoL. IsakssonP. AchenbachA. AycockO. CorellA. DenigM. O. DistlerM. HoekW. LauthZ LiuH. MerkelU. MüllerJ. PochodzallaS. F. SánchezB. S. SchlimmeC. SfientiM. ThielM. ZambranaH. AhmadiS. AhmedS. BleserL. CapozzaM. CardinaliA. DbeyssiA. EhretB. FröhlichP GrasemannS HaaslerD. IzardJ JorgeD. KhaneftR. KlasenR. KliemtJan KöhlerH. LeithoffD. X. LinF. E. MaasS. MaldanerMartin C. MichelM. C. Mora EspíC. Morales MoralesC. MotzkoO. NollS. PflügerD. Rodríguez PiñeiroMarcell SteinenE. WalaaS. WolffI. ZimmermannA. FedorovM. KorzhikO. MissevitchP. BalanutsaV. ChernetskyA. DemekhinA. DolgolenkoP. FedoretsА. С. ГерасимовV. GoryachevD. Y. KirinV. MatveevA. V. StavinskiyA. BalashoffA. BoukharovO.B. MalyshevI. MarishevV.B. ChandratreV.M. DatarV. JhaH. KumawatAjit Kumar MohantyA. ParmarA KB. RoyG. SonikaC. FritzschS. GrieserA. K. HergemöllerB. HetzN. HüskenA. KhoukazJ. P. WesselsC. HeroldKhanchai KhosonthongkeeC. KobdajA. LimphiratPornrad SrisawadYupeng YanA. E. BlinovS.A. KononovE. A. KravchenkoE. AntokhinM. BarnyakovA. BarnyakovK. BeloborodovV. E. BlinovV. S. BobrovnikovI.A. KuyanovA. P. OnuchinS. PivovarovE. PyataS. I. SerednyakovYu. A. TikhonovR. KunneD. MarchandB. RamsteinJ. Van de WieleY. WangG. BocaV. BurianM. FingerM. FingerA NikolovovaM. PešekM. PeškováMarkus PfefferI. ProchazkaM. SlunečkaP. GallusV. JaryJ. NovýM. TomášekM. ViriusV. VrbaV. AbramovNI BelikovS. BukreevaA. DavidenkoA. A. DerevschikovY. GoncharenkoV. GrishinVassili KachanovV. A. KormilitsinA. LevinY. MelnikN. MinaevВ. В. МочаловD. MorozovL. V. NogachS. PoslavskiyA. RyazantsevS. RyzhikovP. SemenovI. SheinAndrey UzunianA. L. VasilievA. E. YakutinUtpal RoyB. YabsleyS. BelostotskiG. GavrilovA. IzotovS. I. ManaenkovO. V. MiklukhoD. VeretennikovA. ZhdanovT. BäckB. CederwallK. MakónyiM. PrestonP.-E. TegnérD. WölbingS. GodreM.P. BussaS. MarcelloS. SpataroF. IazziR. IntrozziA. LavagnoD. CalvoP. De RemigisA. FilippiG. MazzaA. RivettiR. WheadonA. MartinH. CalénW. Ikegami AnderssonT. JohanssonA. KupśćP. MarciniewskiM. PapenbrockJ. PetterssonJenny ReginaK. SchönningM. WolkeJ. Dı́azV. Pothodi ChackaraA. ChłopikG. KȩsikD. MelnychukB. SłowińskiA. TrzcińskiM. WojciechowskiS. WronkaB. ZwiȩglińskiP. BühlerJ. MártonD. SteinschadenK. SuzukiE. WidmannS. ZimmermannJ. Zmeskal
    1
    Citation
    54
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    PANDA (anti-Proton ANnihiliation at DArmstadt) is planned to be one of the four main experiments at the future international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. It is going to address fundamental questions of hadron physics and quantum chromodynamics using cooled antiproton beams with a high intensity and and momenta between 1.5 and 15 GeV/c. PANDA is designed to reach a maximum luminosity of 2x10^32 cm^2 s. Most of the physics programs require an excellent particle identification (PID). The PID of hadronic states at the forward endcap of the target spectrometer will be done by a fast and compact Cherenkov detector that uses the detection of internally reflected Cherenkov light (DIRC) principle. It is designed to cover the polar angle range from 5° to 22° and to provide a separation power for the separation of charged pions and kaons up to 3 standard deviations (s.d.) for particle momenta up to 4 GeV/c in order to cover the important particle phase space. This document describes the technical design and the expected performance of the novel PANDA Disc DIRC detector that has not been used in any other high energy physics experiment (HEP) before. The performance has been studied with Monte-Carlo simulations and various beam tests at DESY and CERN. The final design meets all PANDA requirements and guarantees suffcient safety margins.
    Keywords:
    Particle identification
    Antiproton
    DESY
    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final–state particle and their momentum vectors. The ANDA experiment at FAIR and the CLAS 12 experiment and Jefferson Laboratory both plan to use imaging Cherenkov counters for particle identification. CLAS 12 will feature a Ring Imaging CHerenkov counter (RICH), while ANDA plans to construct Cherenkov counters relying on the Detections of Internally Reflected Cherenkov light (DIRC). These detectors require high–rate, single–photon capable light detection systems with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi–anode photomultiplier tubes to micro–channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of the rate dependence, cross–talk, time–resolution and position resolution fro a range of commercially available photon detection solutions are presented and evaluated on their applicability to the ANDA and CLAS12 Cherenkov counters.
    Particle identification
    Silicon Photomultiplier
    Cherenkov detector
    Granularity
    Transition radiation
    Particle identification
    Cherenkov detector
    Particle (ecology)
    Antiproton
    Annihilation
    Bar (unit)
    Momentum (technical analysis)
    Citations (1)
    This paper deals with two particle identification methods: dE/dx and Cherenkov detection. The dE/dx method is the most common technique used in conjunction with tracking in gaseous detectors. We systematically compare existing dE/dx data with various predictions available in the literature and judge the overall consistency. To my knowledge, this comparison was not done to date. There are two Cherenkov light emission detection techniques: the threshold and the Ring imaging methods. We want to discuss the recent trend in these techniques.
    Particle identification
    Tracking (education)
    Cherenkov detector
    Particle detector
    Identification
    Citations (1)