logo
    Prototype Design of Smart Greenhouse Gases Systems for Environmental Monitoring in Peatland Areas
    1
    Citation
    0
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Monitoring atmospheric greenhouse gases emissions in peatlands are increasingly important to anticipate the causes of fires and their impact on the environment.This study has designed a prototype GHG monitoring system for tropical peatlands using Netduino 3 Wi-Fi and is connected to meteorological sensors.The application systems developed with C# can access measurements remotely through the Internet of Things platform.The smart monitoring system has the advantage to measure new parameters such as precipitable water vapor and water vapor concentration rather than originally only measuring surface pressure, temperature, and relative humidity.It also can send measurement results and store data to micro secure digital and two web servers (Google Form and Dropbox).In the first stage, the prototype was tested in two conditions: inside and outside the laboratory before being installed on peatlands.The result of the measurement system has also been compared with CO2 levels and CH4 levels measured from NDIR gas sensors.
    Conventional agriculture on peatlands requires drainage, but this practice causes high emissions of the greenhouse gases (GHG) carbon dioxide (CO2) and nitrous oxide (N2O). Paludiculture is an option to mitigate these adverse environmental effects while maintaining productive land use. Whereas the GHG exchange of paludiculture on rewetted bog peat, i.e. Sphagnum farming, is relatively well examined, data on GHG emissions from fen paludicultures is still very scarce. As typical fen paludiculture species are aerenchymous plants, the release of methane (CH4) is of particular interest when optimising the GHG balance of such systems. Topsoil removal is an option to reduce the CH4 emissions upon rewetting but retaining a nutrient rich topsoil might foster the biomass growth.In this project, Typha angustifolia, Typha latifolia, and Phragmites australis are grown at a fen peatland formerly used as grassland. Water levels will be kept at the surface or slightly above it. In parts of the newly created polder surrounded by a peat dam, the topsoil is removed. Four smaller sub-polders are installed to separate the effects of topsoil removal and water level. Here, the water levels can be adjusted independently from the main polder. Greenhouse gas exchange is measured for all three species with and without topsoil removal. Additionally, a reference grassland site close by and a site on the dam are included in the measurements. GHG measurements are carried out every two to four weeks on a campaign basis using manual chambers and a portable analyser for both CH4 and CO2. Here we present GHG balances of the first two years after planting the paludicultures.Despite of imperfect water management during the first year after planting, all paludiculture species were both a net CO2 and GHG sink regardless the topsoil treatment. During this period, fluctuating water levels resulted in low CH4 emissions while N2O emissions were of greater importance regarding the GHG balance. Due to more stable water levels in the second year, higher methane emissions are expected. Carbon export by the first biomass harvest will also be taken into account.
    Topsoil
    Nitrous oxide
    Revegetation
    Tropical peatlands cycle and store large amounts of carbon in their soil and biomass1-5. Climate and land-use change alters greenhouse gas (GHG) fluxes of tropical peatlands, but the magnitude of these changes remains highly uncertain6-19. Here we measure net ecosystem exchanges of carbon dioxide, methane and soil nitrous oxide fluxes between October 2016 and May 2022 from Acacia crassicarpa plantation, degraded forest and intact forest within the same peat landscape, representing land-cover-change trajectories in Sumatra, Indonesia. This allows us to present a full plantation rotation GHG flux balance in a fibre wood plantation on peatland. We find that the Acacia plantation has lower GHG emissions than the degraded site with a similar average groundwater level (GWL), despite more intensive land use. The GHG emissions from the Acacia plantation over a full plantation rotation (35.2 ± 4.7 tCO2-eq ha-1 year-1, average ± standard deviation) were around two times higher than those from the intact forest (20.3 ± 3.7 tCO2-eq ha-1 year-1), but only half of the current Intergovernmental Panel on Climate Change (IPCC) Tier 1 emission factor (EF)20 for this land use. Our results can help to reduce the uncertainty in GHG emissions estimates, provide an estimate of the impact of land-use change on tropical peat and develop science-based peatland management practices as nature-based climate solutions.
    Citations (17)
    Efforts to mitigate greenhouse gas (GHG) emissions are receiving increased attention among governmental and commercial actors. In recent years, the interest in paludiculture, i.e. the use of rewetted peatlands, has grown because of its potential to reduce GHG emissions by stopping soil decomposition. Moreover, cultivating wetland plants on rewetted peatlands for bioenergy production that replaces fossil fuels in the transport sector, can contribute to additional GHG emission reductions. In this study, an analysis of literature data was conducted to obtain data on GHG emissions (CO2 and CH4) and biomass production from rewetted peatlands cultivated with two different wetland plant species: Phragmites australis (Pa) and Typha latifolia (Tl). In addition, a biogas experiment was carried out to investigate the biomethane yield of Pa and Tl biomass, and the reduction of global warming potential (GWP) by using biomethane as vehicle fuel. The results show that peatland rewetting can be an important measure to mitigate the GWP as it reduces GHG emissions from the soil, particularly on a 100-year timescale but also to some extent on a 20-year timescale. More specifically, rewetting of 1 km2 of peatland can result in a GWP reduction corresponding to the emissions from ±2600 average sized petrol cars annually. Growing Pa on rewetted peatlands reduces soil GHG emissions more than growing Tl, but Pa and Tl produced similar amounts of biomass and biomethane per land area. Our study concludes that Pa, because of a more pronounced GWP reduction, is the most suitable wetland plant to cultivate after peatland rewetting.
    Biogas
    Abstract. It is generally known that managed, drained peatlands act as carbon (C) sources. In this study we examined how mitigation through the reduction of the intensity of land management and through rewetting may affect the greenhouse gas (GHG) emission and the C balance of intensively managed, drained, agricultural peatlands. Carbon and GHG balances were determined for three peatlands in the western part of the Netherlands from 2005 to 2008 by considering spatial and temporal variability of emissions (CO2, CH4 and N2O). One area (Oukoop) is an intensively managed grass-on-peatland area, including a dairy farm, with the ground water level at an average annual depth of 0.55 (±0.37) m below the soil surface. The second area (Stein) is an extensively managed grass-on-peatland area, formerly intensively managed, with a dynamic ground water level at an average annual depth of 0.45 (±0.35) m below the soil surface. The third area is a (since 1998) rewetted former agricultural peatland (Horstermeer), close to Oukoop and Stein, with the average annual ground water level at a depth of 0.2 (±0.20) m below the soil surface. During the measurement campaigns we found that both agriculturally managed sites acted as C and GHG sources and the rewetted former agricultural peatland acted as a C and GHG sink. The ecosystem (fields and ditches) total GHG balance, including CO2, CH4 and N2O, amounted to 3.9 (±0.4), 1.3 (±0.5) and −1.7 (±1.8) g CO2-eq m−2 d−1 for Oukoop, Stein and Horstermeer, respectively. Adding the farm-based emissions to Oukoop and Stein resulted in a total GHG emission of 8.3 (±1.0) and 6.6 (±1.3) g CO2-eq m−2 d−1, respectively. For Horstermeer the GHG balance remained the same since no farm-based emissions exist. Considering the C balance (uncertainty range 40–60%), the total C release in Oukoop and Stein is 5270 and 6258 kg C ha−1 yr−1, respectively (including ecosystem and management fluxes), and the total C uptake in Horstermeer is 3538 kg C ha−1 yr−1. Water bodies contributed significantly to the terrestrial GHG balance because of a high release of CH4. Overall, this study suggests that managed peatlands are large sources of GHGs and C, but, if appropriate measures are taken, they can be turned back into GHG and C sinks within 15 years of abandonment and rewetting. The shift from an intensively managed grass-on-peat area (Oukoop) to an extensively managed one (Stein) reduced the GHG emissions mainly because N2O emission and farm-based CH4 emissions decreased.
    Sink (geography)
    Carbon sink
    Water balance
    Soil carbon
    Citations (61)
    Abstract Peatlands are strategic areas for climate change mitigation because of their matchless carbon stocks. Drained peatlands release this carbon to the atmosphere as carbon dioxide (CO 2 ). Peatland rewetting effectively stops these CO 2 emissions, but also re-establishes the emission of methane (CH 4 ). Essentially, management must choose between CO 2 emissions from drained or CH 4 emissions from rewetted peatland. This choice must consider radiative effects and atmospheric lifetimes of both gases, with CO 2 being a weak but persistent and CH 4 a strong but short-lived greenhouse gas. The resulting climatic effects are, thus, strongly time-dependent. We used a radiative forcing model to compare forcing dynamics of global scenarios for future peatland management using areal data from the Global Peatland Database. Our results show that CH 4 radiative forcing does not undermine the climate change mitigation potential of peatland rewetting. Instead, postponing rewetting increases the long-term warming effect of continued CO 2 emissions. Warnings against CH 4 emissions from rewetted peatlands are therefore unjustified and counterproductive.
    Carbon fibers
    Global-warming potential
    Citations (23)
    Peatlands are strategic areas for climate change mitigation because of their matchless carbon stocks. Drained peatlands release this carbon to the atmosphere as carbon dioxide (CO
    Methane Emissions
    Global-warming potential
    Citations (304)
    Photovoltaic (PV) power generation is one of the world's most promising options for carbon emission reduction. However, whether the operation period of solar parks can increase greenhouse gas (GHG) emissions in hosting natural ecosystems has not been fully considered. Here, we conducted a field experiment to compensate for the lack of evaluation of the effects of PV array deployment on GHG emissions. Our results show that the PV arrays caused significant differences in air microclimate, soil properties, and vegetation characteristics. Simultaneously, PV arrays had more significant effects on CO2 and N2O emissions but a minor impact on CH4 uptake in the growing season. Of all the environmental variables included, soil temperature and moisture were the main drivers of GHG flux variation. The sustained flux global warming potential from the PV arrays significantly increased by 8.14% compared to the ambient grassland. Our evaluation models identified that the GHG footprint of PV arrays during the operation period on grasslands was 20.62 g CO2-eq kW h–1. Compared with our model estimates, GHG footprint estimates reported in previous studies were generally less by 25.46–50.76%. The contribution of PV power generation to GHG reduction may be overestimated without considering the impact of PV arrays on hosting ecosystems.
    Carbon Footprint
    Microclimate
    Citations (7)