Gradual warming prior to the end‐Permian mass extinction
Jana GliwaMichael WiedenbeckMartin SchobbenClemenz V. UllmannWolfgang KiesslingAbbas GhaderiUlrich StruckDieter Korn
11
Citation
65
Reference
10
Related Paper
Citation Trend
Abstract:
Abstract The biggest known mass extinction in the history of animal life occurred at the Permian–Triassic boundary and has often been linked to global warming. Previous studies have suggested that a geologically rapid (<40 kyr) temperature increase of more than 10°C occurred simultaneously with the main extinction pulse. This hypothesis is challenged by geochemical and palaeontological data indicating profound environmental perturbations and a temperature rise prior to the main extinction. Using secondary ion mass spectrometry (SIMS), we measured oxygen isotope ratios from Changhsingian (late Permian) ostracods of north‐western Iran. Our data show that ambient seawater temperature began to rise at least 300 kyr prior to the main extinction event. Gradual warming by approximately 12°C was probably responsible for initial environmental degradation that eventually culminated in the global end‐Permian mass extinction.Keywords:
Permian–Triassic extinction event
Extinction (optical mineralogy)
Permian–Triassic extinction event
Conodont
Early Triassic
Cite
Citations (167)
The mass extinction at the end of the Permian was the most profound in the history of life. Fundamental to understanding its cause is determining the tempo and duration of the extinction. Uranium/lead zircon data from Late Permian and Early Triassic rocks from south China place the Permian-Triassic boundary at 251.4 +/- 0.3 million years ago. Biostratigraphic controls from strata intercalated with ash beds below the boundary indicate that the Changhsingian pulse of the end-Permian extinction, corresponding to the disappearance of about 85 percent of marine species, lasted less than 1 million years. At Meishan, a negative excursion in delta13C at the boundary had a duration of 165,000 years or less, suggesting a catastrophic addition of light carbon.
Geochronology
Permian–Triassic extinction event
Early Triassic
Extinction (optical mineralogy)
Cite
Citations (631)
Abstract The end‐Permian mass extinction was the most pervasive biotic crisis in the history of life. About 80% of marine species and some 70% of land species became extinct, probably in two pulses separated by about 10 million years.
Permian–Triassic extinction event
Extinction (optical mineralogy)
Cite
Citations (1)
Newly obtained foraminifer faunas from the Permian-Triassic (P-Tr) transition at the Dajiang and Bianyang sections in the Nanpanjiang Basin, South China, comprise 61 species in 40 genera. They belong to the Palaeofusulina sinensis Zone, the youngest Permian foraminifer zone in South China. Quantitative analysis reveals that the last occurrences of more than a half of species (28/54) fall into a 60-cm-interval at the uppermost Changhsingian skeletal packstone unit and thus calibrate the end-Permian extinction to the skeletal packstonecalcimicrobial framestone boundary. About 93% (54/58) of species of the latest Permian assemblage became extinct in the P-Tr crisis. Four major foraminiferal groups, the Miliolida, Fusulinida, Lagenida, and Textulariina, have extinction rates up to 100%, 96%, 92%, and 50%, respectively, and thus experienced selective extinctions. Both Hemigordius longus and ? Globivalvulina bulloides temporarily survived the end-Permian extinction event and extended into the earliest Triassic but became extinct soon after. The post-extinction foraminifer assemblage is characterized by the presence of both disaster taxa and Lazarus taxa. Foraminifer distribution near the P-Tr boundary also reveals that the irregular contact surface at the uppermost Permian may be created by a massive submarine dissolution event, which may be coeval with the end-Permian mass extinction. A new species, Rectostipulina hexamerata, is described here.
Permian–Triassic extinction event
Extinction (optical mineralogy)
Early Triassic
Cite
Citations (75)
The stratigraphical and geographical distribution of 851 brachiopod species from 216 genera and 65 families in the Permian of South China are analysed. It is revealed that the brachiopod diversity underwent two sharp falls during the Permian. The first occurred at the end of Maokouan, accompaning the widely recognised, extensive regression across the Maokouan‐Wujiapingian boundary. Fifty‐seven species of 29 genera survived this first major extinction event. The second sharp reduction of brachiopod diversity took place in the later Changhsingian, with only 17 Permian‐type brachiopod species of 12 genera straggling into the earliest Triassic. Detailed stratigraphic analysis shows that more than 90% of the Changhsingian brachiopod species disappeared at different levels in the Changhsingian before the widely perceived end‐Permian 'mass extinction' occurred. It is also notable that each of the step‐wise diversity reduction events was apparently heterochronous. In view of the evidence from lithologies, faunal components and geochemical analyses, the two sharp falls of Permian brachiopod diversity in South China are considered to be closely related to multiple interactions of an environmental deterioration caused by large‐scale regressions. Key words: PermianBrachiopodaDiversity PatternsExtinction
Permian–Triassic extinction event
Extinction (optical mineralogy)
Lithology
Cite
Citations (90)
Permian–Triassic extinction event
Stratotype
Extinction (optical mineralogy)
Early Triassic
Conodont
Cite
Citations (21)
The Permian/Triassic mass extinction plays a great role in the evolutionary history of the Earth.After that,the revolution of species was accelerated greatly.The paper summarizes simply the research results of geochemists,geologists and paleontologists in recent years,including dating of the event and several hypotheses.Especially,we described in detail the exterrestrial impact(asteroid or comet),volcanic eruption,anoxia and marine acidification,and then made a simple analysis and discussion in the significance of mass extinction.
Permian–Triassic extinction event
Early Triassic
Extinction (optical mineralogy)
Trias
Cite
Citations (0)
Permian–Triassic extinction event
Early Triassic
Extinction (optical mineralogy)
Terrestrial ecosystem
Cite
Citations (103)
Abstract Ammonoids suffered a diversity bottleneck during the Permian-Triassic mass extinction (PTME) and experienced a rapid diversification in the Early Triassic. However, the kinds of ammonoids that were more likely to survive the PTME and that fueled subsequent diversification are still poorly known. We compiled a comprehensive morphological data set and used the nonmetric multidimensional scaling method to reveal the impact of the PTME on the morphological selectivity of ammonoids. Our results show that postextinction taxa occupied a quite different morphospace when compared with the pre-extinction assemblages. The survivors were mainly smooth and weakly ornamented forms, while the late Permian species were dominated by coarsely ornamented forms. Contrary to previously recognized nonselective patterns, these results suggest a morphological selectivity of the Permian-Triassic crisis. Newcomers in the Griesbachian were mainly compressed and smooth forms. This morphological shift from the coarsely ornamented ammonoids dominating the Changhsingian to the smooth ammonoids dominating the Griesbachian possibly suggests an ecological turnover of ammonoids during the PTME.
Early Triassic
Extinction (optical mineralogy)
Permian–Triassic extinction event
Cite
Citations (12)
Early Triassic
Permian–Triassic extinction event
Extinction (optical mineralogy)
Biota
Cite
Citations (227)