Distribution of pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in the hypothalamus and extended amygdala of the rat
2
Citation
0
Reference
10
Related Paper
Citation Trend
Abstract:
Pituitary adenylate cyclase activating polypeptide (PACAP) is found in two forms of 27 and 38 amino acids (PACAP-27 and PACAP-38 respectively) in the mammalian central nervous system. Using antibodies to these two forms of PACAP, we examined the distribution of PACAP immunoreactivity in the rat hypothalamus and a number of extrahypothalamic areas. The patterns of immunostaining for PACAP-27 and PACAP-38 were similar: prominent terminal labelling was present in the retrochiasmatic area, median eminence, and posterior periventricular nucleus of the hypothalamus as well as the bed nucleus of the stria terminalis and amygdaloid complex. After colchicine treatment, immunopositive cell bodies were found in the preoptic region of the periventricular zone of the hypothalamus, the suprachiasmatic and paraventricular hypothalamic nuclei, neural structures adjacent to the median eminence (including the retrochiasmatic area, arcuate nucleus, ventromedial hypothalamus, and tuber cinereum), and the lateral mammillary and supramammillary nuclei. In all these areas, immunolabelling appeared specific since it was abolished by preabsorption of primary antisera with the appropriate PACAP peptide. However, the number of immunopositive cells in the suprachiasmatic nucleus was also reduced by preabsorption of PACAP-27/38 antisera with vasoactive intestinal polypeptide, suggesting that a subpopulation of cells in the suprachiasmatic nucleus express a peptide which has significant sequence homology with both PACAP-27/38 and vasoactive intestinal polypeptide. The distribution of PACAP immunoreactivity throughout the hypothalamus, bed nucleus of the stria terminalis, and amygdala suggests the involvement of PACAP in a number of processes including limbic, autonomic, and neuroendocrine functions as well as regulation of the circadian pacemaker. © 1996 Wiley-Liss, Inc.Keywords:
Median eminence
Periventricular nucleus
Septal nuclei
Preoptic area
Pituitary adenylate cyclase activating polypeptide (PACAP) is found in two forms of 27 and 38 amino acids (PACAP-27 and PACAP-38 respectively) in the mammalian central nervous system. Using antibodies to these two forms of PACAP, we examined the distribution of PACAP immunoreactivity in the rat hypothalamus and a number of extrahypothalamic areas. The patterns of immunostaining for PACAP-27 and PACAP-38 were similar: prominent terminal labelling was present in the retrochiasmatic area, median eminence, and posterior periventricular nucleus of the hypothalamus as well as the bed nucleus of the stria terminalis and amygdaloid complex. After colchicine treatment, immunopositive cell bodies were found in the preoptic region of the periventricular zone of the hypothalamus, the suprachiasmatic and paraventricular hypothalamic nuclei, neural structures adjacent to the median eminence (including the retrochiasmatic area, arcuate nucleus, ventromedial hypothalamus, and tuber cinereum), and the lateral mammillary and supramammillary nuclei. In all these areas, immunolabelling appeared specific since it was abolished by preabsorption of primary antisera with the appropriate PACAP peptide. However, the number of immunopositive cells in the suprachiasmatic nucleus was also reduced by preabsorption of PACAP-27/38 antisera with vasoactive intestinal polypeptide, suggesting that a subpopulation of cells in the suprachiasmatic nucleus express a peptide which has significant sequence homology with both PACAP-27/38 and vasoactive intestinal polypeptide. The distribution of PACAP immunoreactivity throughout the hypothalamus, bed nucleus of the stria terminalis, and amygdala suggests the involvement of PACAP in a number of processes including limbic, autonomic, and neuroendocrine functions as well as regulation of the circadian pacemaker. © 1996 Wiley-Liss, Inc.
Median eminence
Periventricular nucleus
Septal nuclei
Preoptic area
Cite
Citations (2)
The principal nucleus of the bed nuclei of the stria terminalis (BSTp) is sexually dimorphic and participates in several aspects of reproduction. A detailed analysis of its projections revealed that the BSTp provides major inputs to forebrain regions that are sexually dimorphic and contain high densities of neurons that express receptors for sex steroid hormones in a pattern that is remarkably similar to that of the medial amygdaloid nucleus. The BSTp sends its strongest outputs to the periventricular zone of the hypothalamus and innervates structures thought to play important roles in regulating hormone secretion from the anterior pituitary, but it also provides strong inputs to the medial preoptic and ventromedial nuclei of the hypothalamus. The BSTp also sends a strong return projection to the medial nucleus of the amygdala. The projections of the BSTp appear to be more robust in males with striking sex differences observed in most, but not all, major terminal fields. Moreover, various terminal fields appeared to differ in their developmental sensitivity to manipulation of circulating levels of sex steroids during the neonatal period. Thus, the organization of projections from the BSTp suggests that it plays a particularly important role in regulating neuroendocrine function and that neurons in this nucleus may relay olfactory information to the hypothalamus differently in male and female rats. Furthermore, the differential action of sex steroids on the density of afferents from the BSTp in various regions indicates that these hormones exert a target-specific influence on the development of BSTp projections.
Forebrain
Septal nuclei
Periventricular nucleus
Preoptic area
Sexual dimorphism
Sexual Differentiation
Cite
Citations (94)
Stress compromises reproductive function and the major physiological system activated during stress is the hypothalamo-pituitary-adrenal axis. Corticotrophin-releasing hormone and arginine vasopressin (AVP), which are produced in neurones of the paraventricular nucleus (PVN), drive the hypothalamo-pituitary-adrenal axis and are also implicated in the suppression of the reproductive axis. We used retrograde tracing and Fos labelling to map the projections from the PVN to the preoptic area (POA) where most gonadotrophin releasing hormone (GnRH) neurones are found. Fluorogold (FG) injections were made into the POA of gonadectomised male and female sheep (n = 5/sex), the animals were stressed and the brains recovered for histochemistry. All animals responded to stress with an increase in the number of Fos-labelled nuclei in the PVN. Few retrogradely labelled cells of the PVN were activated by stress. Dual labelling showed that very few FG-labelled cells also stained for corticotrophin-releasing hormone, none for AVP or enkephalin. Dual labelling for FG and Fos in the bed nucleus of the stria terminalis (BNST) and the arcuate nucleus showed that no FG-labelled cells in the BNST and only few in the ARC were activated by stress. No sex differences were observed in the activation of FG-labelled cells in any of the nuclei examined. We conclude that, although cells of the PVN, BNST and/or arcuate nucleus may affect reproduction via the GnRH cells of the POA, this is unlikely to involve direct input to the POA. If cells of these regions are involved in GnRH suppression during stress, this may occur via interneuronal pathways.
Preoptic area
Median eminence
Median preoptic nucleus
Periventricular nucleus
Cite
Citations (16)
Preoptic area
Median eminence
Septal nuclei
Lateral hypothalamus
Cite
Citations (39)
This study uses Fos immunocytochemistry to show that the medial preoptic area and ventral bed nucleus of the stria terminalis are activated in maternally behaving female rats. In Experiment 1, virgin female rats that showed maternal behavior toward pups had more cells in these regions that expressed Fos-like immunoreactivity than did virgin females that were not maternally responsive. In Experiment 2, postpartum rats that were exposed to pups and showed maternal behavior had more Fos-labeled cells in these regions than did postpartum rats exposed to candy. Evidence also indicated that functional modifications in the medial amygdala were related to the changes in Fos expression observed in the preoptic area and ventral bed nucleus of the stria terminalis.
Preoptic area
Septal nuclei
Extended amygdala
Cite
Citations (126)
Forebrain
Extended amygdala
Periventricular nucleus
Preoptic area
Septal nuclei
Cite
Citations (44)
Septal nuclei
Cite
Citations (0)
Mesocricetus
Periventricular nucleus
Golden hamster
Forebrain
Septal nuclei
Sexual dimorphism
Cite
Citations (18)
Median preoptic nucleus
Periaqueductal gray
Putamen
Septal nuclei
Periventricular nucleus
Preoptic area
Cite
Citations (42)
As stressful environment is a potent modulator of feeding, we seek in the present work to decipher the neuroanatomical basis for an interplay between stress and feeding behaviors. For this, we combined anterograde and retrograde tracing with immunohistochemical approaches to investigate the patterns of projections between the dorsomedial division of the bed nucleus of the stria terminalis (BNST), well connected to the amygdala, and hypothalamic structures such as the paraventricular (PVH) and dorsomedial (DMH), the arcuate (ARH) nuclei and the lateral hypothalamic areas (LHA) known to control feeding and motivated behaviors. We particularly focused our study on afferences to proopiomelanocortin (POMC), agouti-related peptide (AgRP), melanin-concentrating-hormone (MCH) and orexin (ORX) neurons characteristics of the ARH and the LHA, respectively. We found light to intense innervation of all these hypothalamic nuclei. We particularly showed an innervation of POMC, AgRP, MCH and ORX neurons by the dorsomedial and dorsolateral divisions of the BNST. Therefore, these results lay the foundation for a better understanding of the neuroanatomical basis of the stress-related feeding behaviors.
Septal nuclei
Cite
Citations (24)