Radical‐Pairing Interactions in a Molecular Switch Evidenced by Ion Mobility Spectrometry and Infrared Ion Spectroscopy
Emeline HanozinBenoît MignoletJonathan MartensGiel BerdenDamien SluysmansAnne‐Sophie DuwezJ. Fraser StoddartGauthier EppeJos OomensEdwin De PauwDenis Morsa
4
Citation
69
Reference
10
Related Paper
Citation Trend
Abstract:
Abstract The digital revolution sets a milestone in the progressive miniaturization of working devices and in the underlying advent of molecular machines. Foldamers involving mechanically entangled components with modular secondary structures are among the most promising designs for molecular switch‐based applications. Characterizing the nature and dynamics of their intramolecular network following the application of a stimulus is the key to their performance. Here, we use non‐dissociative electron transfer as a reductive stimulus in the gas phase and probe the consecutive co‐conformational transitions of a donor‐acceptor oligorotaxane foldamer using electrospray mass spectrometry interfaced with ion mobility and infrared ion spectroscopy. A comparison of collision cross section distributions for analogous closed‐shell and radical molecular ions sheds light on their respective formation energetics, while variations in their respective infrared absorption bands evidence changes in intramolecular organization as the foldamer becomes more compact. These differences are compatible with the advent of radical‐pairing interactions.Keywords:
Molecular switch
Infrared multiphoton dissociation
Electron-transfer dissociation
Infrared multiphoton dissociation
Electron-transfer dissociation
Electron-capture dissociation
Fragmentation
Collision-induced dissociation
Cite
Citations (14)
Gas phase mid-infrared spectroscopy of molecular ions can nowadays be performed with high performance mass spectrometers coupled to free electron lasers (FEL). The wide and continuous tunability of highly intense FELs in the mid-infrared region can be exploited for performing infrared multiple photon dissociation (IRMPD) spectroscopy of molecular ions. This review will focus on gas phase IRMPD spectroscopic investigations aiming at probing the structure and the reactivity of transition metal complexes. The performance of infrared spectroscopy for characterizing the coordination mode of polydentate ligands and the spin state of the metal will be illustrated. Infrared spectroscopy has also been exploited to probe the reactivity of metal complexes, and a special attention will be given to the infrared spectroscopy of reactive intermediates.
Infrared multiphoton dissociation
Two-dimensional infrared spectroscopy
Cite
Citations (282)
In this work, we characterize – for the first time – in the gas phase infrared spectra of three isomeric Polycyclic Aromatic Hydrocarbon (PAH) cations of C24H14 composition that belong to distinctly different symmetry groups (C2h, Cs and C1). Mid-infrared (Mid-IR) spectra are recorded by means of infrared multiple photon dissociation (IRMPD) spectroscopy at the free electron laser for infrared experiments (FELIX) laboratory. The measured infrared (IR) band positions compare reasonably well with density functional theory (DFT) calculated values. The number of IR active bands increases as the symmetry of the molecule lowers. The IRMPD spectra of irregular PAHs are found to be dense and do not resemble the sharp signatures typical of astronomical IR bands, but rather look like the broad plateau on which these are perched. This lends credit to the GrandPAH hypothesis that suggests that small and irregular PAHs are weeded out by the strong interstellar radiation field and only large regular PAHs remain.
Infrared multiphoton dissociation
Cite
Citations (11)
In top-down proteomics, intact gaseous proteins are fragmented in a mass spectrometer by, e.g., electron capture dissociation (ECD) to obtain structural information. By far, most top-down approaches involve dissociation of protein cations. However, in electrospray ionization of phosphoproteins, the high acidity of phosphate may contribute to the formation of intramolecular hydrogen bonds or salt bridges, which influence subsequent fragmentation behavior. Other acidic proteins or proteins with regions containing multiple acidic residues may also be affected similarly. Negative ion mode, on the other hand, may enhance deprotonation and unfolding of multiply phosphorylated or highly acidic protein regions. Here, activated ion electron detachment dissociation (AI-EDD) and negative ion infrared multiphoton dissociation (IRMPD) were employed to investigate the fragmentation of intact proteins, including multiply phosphorylated β-casein, calmodulin, and glycosylated ribonuclease B. Compared to AI-ECD and positive ion IRMPD, AI-EDD and negative ion IRMPD provide complementary protein sequence information, particularly in regions with high acidity, including the multiply phosphorylated region of β-casein.
Infrared multiphoton dissociation
Electron-capture dissociation
Electron-transfer dissociation
Fragmentation
Phosphopeptide
Cite
Citations (13)
We report a combined experimental and computational study aimed at elucidating the structure of N-terminal fragment ions of the c type produced by electron transfer dissociation of photo-leucine (L*) peptide ions GL*GGKX. The c 4 ion from GL*GGK is found to retain an intact diazirine ring that undergoes selective photodissociation at 355 nm, followed by backbone cleavage. Infrared multiphoton dissociation action spectra point to the absence in the c 4 ion of a diazoalkane group that could be produced by thermal isomerization of vibrationally hot ions. The c 4 ion from ETD of GL*GGK is assigned an amide structure by a close match of the IRMPD action spectrum and calculated IR absorption. The energetics and kinetics of c 4 ion dissociations are discussed. Graphical Abstract ᅟ.
Infrared multiphoton dissociation
Electron-transfer dissociation
Diazirine
Cite
Citations (13)
Infrared ion spectroscopy (IRIS), a mass-spectrometry-based technique exploiting resonant infrared multiple photon dissociation (IRMPD), has been applied for the identification of novel psychoactive substances (NPS). Identification of the precise isomeric forms of NPS is of significant forensic relevance since legal controls are dependent on even minor molecular differences such as a single ring-substituent position. Using three isomers of fluoroamphetamine and two ring-isomers of both MDA and MDMA, we demonstrate the ability of IRIS to distinguish closely related NPS. Computationally predicted infrared (IR) spectra are shown to correspond with experimental spectra and could explain the molecular origins of their distinctive IR absorption bands. IRIS was then used to investigate a confiscated street sample containing two unknown substances. One substance could easily be identified by comparison to the IR spectra of reference standards. For the other substance, however, this approach proved inconclusive due to incomplete mass spectral databases as well as a lack of available reference compounds, two common analytical limitations resulting from the rapid development of NPS. Most excitingly, the second unknown substance could nevertheless be identified by using computationally predicted IR spectra of several potential candidate structures instead of their experimental reference spectra.
Infrared multiphoton dissociation
Drug Detection
Cite
Citations (42)
Infrared spectra in the mid-infrared region (800−1600 cm-1) of highly unsaturated Fe+−hydrocarbon complexes isolated in the gas phase are presented. These organometallic complexes were selectively prepared by ion−molecule reactions in a Fourier transform ion cycloton mass spectrometer (FTICR-MS). The infrared multiphoton dissociation (IRMPD) technique has been employed using the free electron laser facility CLIO (Orsay, France) to record the infrared spectra of the mass selected complexes. The experimental IRMPD spectra present the main features of the corresponding IR absorption spectra calculated ab initio. As predicted by these calculations, the experimental spectra of three selectively prepared isomers of Fe+(butene) present differences in the 800−1100 cm-1 range. On the basis of the comparison with calculated IR spectra, the IRMPD spectrum of Fe(butadiene)+ suggests that the ligand presents the s-trans isomeric form. This study further confirms the potentialities of IRMPD spectroscopy for the structural characterization of organometallic ionic highly reactive intermediates in the gas phase. In conjunction with soft ionization techniques such as electrospray, this opens the door to the gas-phase characterization of reactive intermediates associated with condensed phase catalysts.
Infrared multiphoton dissociation
Cite
Citations (45)
Abstract The introduction of electron capture dissociation (ECD) to electrospray (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) constitutes a significant advance in the structural analysis of biomolecules. The fundamental features and benefits of ECD are discussed in this review. ECD is currently unique to FT‐ICR MS and the fundamentals of that technique are outlined. The advantages and complementarity of ECD in relation to other tandem mass spectrometry (MS/MS) techniques, such as infrared multiphoton dissociation (IRMPD) and sustained off‐resonance collision‐induced dissociation (SORI‐CID), are discussed. The instrumental considerations associated with implementation of ECD, including activated ion techniques and coupling to on‐line separation techniques, are covered, as are the allied processes electronic excitation dissociation (EED), electron detachment dissociation (EDD), and hot electron capture (HECD). A major theme of this review is the role of ECD in proteomics, particularly for characterization of post‐translational modifications (phosphorylation, glycosylation, carboxyglutamic acid, sulfation, acylation, and methionine oxidation) and the top‐down approach to protein identification. The application of ECD to the analysis of polymers, peptide nucleic acids, and oligonucleotides is also discussed. © 2004 Wiley Periodicals, Inc., Mass Spec Rev 24:201–222, 2005
Electron-capture dissociation
Infrared multiphoton dissociation
Electron-transfer dissociation
Fragmentation
Cite
Citations (502)
Acceptor
Molecular switch
Cite
Citations (128)
Protein characterization using top-down approaches emerged with advances in high-resolution mass spectrometers and increased diversity of available activation modes: collision-induced dissociation (CID), infrared multiphoton dissociation (IRMPD) electron capture dissociation (ECD), and electron transfer dissociation (ETD). Nevertheless, top-down approaches are still rarely used for glycoproteins. Hence, this work summarized the capacity of top-down approaches to improve sequence coverage and glycosylation site assignment on the glycoprotein Ribonuclease B (RNase B). The glycan effect on the protein fragmentation pattern was also investigated by comparing the fragmentation patterns of RNase B and its nonglycosylated analog RNase A. The experiments were performed on a Bruker 12-T Qh/FT-ICR SolariX mass spectrometer using vibrational (CID/IRMPD) and radical activation (ECD/ETD) with/without pre- or post-activation (IRMPD or CID, respectively). The several activation modes yielded complementary sequence information. The radical activation modes yielded the most extensive sequence coverage that was slightly improved after a CID predissociation activation event. The combination of the data made it possible to obtain 90% final sequence coverage for RNase A and 86% for RNase B. Vibrational and radical activation modes showed high retention of the complete glycan moiety (>98% for ETD and ECD) facilitating unambiguous assignment of the high-mannose glycosylation site. Moreover, the presence of the high-mannose glycan enhanced fragmentation around the glycosylation site.
Electron-transfer dissociation
Infrared multiphoton dissociation
Electron-capture dissociation
Fragmentation
Cite
Citations (35)