Promoting charge separation by rational integration of a covalent organic framework on a BiVO4 photoanode
15
Citation
28
Reference
10
Related Paper
Citation Trend
Abstract:
For the first time, covalent organic frameworks (COF-TpPa and COF-TpPaC) are selected to combine with the BiVO4 photoanode through a covalent bond. The heterojunction and covalent connection of COFs and BiVO4 can promote the separation of carriers, and the -CH3 on the benzene ring in COF-TpPaC as an electron donor group can increase the carrier concentration of the photoanode. As a result, the TpPaC/BiVO4 photoanode shows the best performance. This covalent hybridization strategy opens a new insight into the development of COF-modified photoanodes.Keywords:
Covalent organic framework
Covalent organic framework
Visible spectrum
Cite
Citations (199)
Abstract Covalent organic frameworks (COF) with periodic porous structures and tunable functionalities are a new class of crystalline polymers connected via strong covalent bonds. Constructing COF materials with high stability and porosity is attracting and essential for COFs’ further functional exploration. In this work, two new covalent organic frameworks (TTA‐TMTA‐COF and TTA‐FMTA‐COF) with high surface area, large pore volume, and excellent chemical stability toward harsh conditions are designed and synthesized by integrating the methoxy functional groups into the networks. Both two COFs are further employed for iodine removal since radioactive iodine in nuclear waste has seriously threatened the natural environment and human health. TTA‐TMTA‐COF and TTA‐FMTA‐COF can capture 3.21 and 5.07 g g −1 iodine, respectively. Notably, the iodine capture capacity for iodine of TTA‐FMTA‐COF does not show any decline after being recycled five times. These results demonstrate both COFs possess ultrahigh capacity and excellent recyclability.
Covalent organic framework
Chemical Stability
Cite
Citations (41)
A heterostructured covalent organic framework (COF) membrane is synthesized via in situ linker exchange. Narrowed pores can be formed at the interface between two types of COFs by adjusting the linker exchange duration. The resultant COF membrane demonstrates a high rejection rate toward Na2SO4 of up to 97%.
Covalent organic framework
Linker
Cite
Citations (9)
Covalent organic frameworks are porous crystals of polymers with two categories based on their covalent linkages: layered structures with two dimensions and networks with three-dimensional structures. Three-dimensional covalent organic frameworks are porous, have large surface areas, and have highly ordered structures. Since covalent bonds are responsible for the formation of three-dimensional covalent organic frameworks, their synthesis has been a challenge and different structures are generated during the synthesis. Moreover, initially, their topologies have been limited to dia, ctn, and bor which are formed by the condensation of triangular or linear units with tetrahedral units. There are very few building units available for their synthesis. Finally, the future perspective of 3D COFs has been designated for the future development of three-dimensional covalent organic frameworks.
Covalent organic framework
Dynamic Covalent Chemistry
Network covalent bonding
Tetrahedron
Organic polymer
Cite
Citations (10)
Covalent organic framework
Visible spectrum
Cite
Citations (5)
A hydrophilic covalent organic framework (BTA-BDSA-COF) was successfully erected by introducing multi-sulfonated groups into a covalent framework structure and it can be easily applied to capture the cationic dye in real water samples.
Covalent organic framework
Cationic polymerization
Cite
Citations (3)
To achieve high-efficiency catalysts for CO2 reduction reaction, various catalytic metal centres and linker molecules have been assembled into covalent organic frameworks. The amine-linkages enhance the binding ability of CO2 molecules, and the ionic frameworks enable to improve the electronic conductivity and the charge transfer along the frameworks. However, directly synthesis of covalent organic frameworks with amine-linkages and ionic frameworks is hardly achieved due to the electrostatic repulsion and predicament for the strength of the linkage. Herein, we demonstrate covalent organic frameworks for CO2 reduction reaction by modulating the linkers and linkages of the template covalent organic framework to build the correlation between the catalytic performance and the structures of covalent organic frameworks. Through the double modifications, the CO2 binding ability and the electronic states are well tuned, resulting in controllable activity and selectivity for CO2 reduction reaction. Notably, the dual-functional covalent organic framework achieves high selectivity with a maximum CO Faradaic efficiency of 97.32% and the turnover frequencies value of 9922.68 h-1, which are higher than those of the base covalent organic framework and the single-modified covalent organic frameworks. Moreover, the theoretical calculations further reveal that the higher activity is attributed to the easier formation of immediate *CO from COOH*. This study provides insights into developing covalent organic frameworks for CO2 reduction reaction.
Covalent organic framework
Non-covalent interactions
Cite
Citations (105)
A novel covalent organic framework (COF) based on terphenyldiboronic acid exhibiting open pores of about 4.1 nm is presented. The pore walls of the COF could be functionalized with a fluorescent dye.
Covalent organic framework
Cite
Citations (34)
For the first time, covalent organic frameworks (COF-TpPa and COF-TpPaC) are selected to combine with the BiVO4 photoanode through a covalent bond. The heterojunction and covalent connection of COFs and BiVO4 can promote the separation of carriers, and the -CH3 on the benzene ring in COF-TpPaC as an electron donor group can increase the carrier concentration of the photoanode. As a result, the TpPaC/BiVO4 photoanode shows the best performance. This covalent hybridization strategy opens a new insight into the development of COF-modified photoanodes.
Covalent organic framework
Cite
Citations (15)
We propose a dynamic covalent chemistry (DCC)-induced linker exchange strategy for the structural transformation between covalent organic frameworks (COFs) and cages for the first time. Studies have shown that the COF-to-cage and cage-to-COF transformations were realized by using borate bonds and imine bonds, respectively, as linkages. Self-sorting experiments suggested that borate cages and imine COFs are thermodynamic minimum compounds. This research builds a bridge between discrete and polymeric organic scaffolds and broadens the knowledge of chemistry and materials for porous materials science.
Dynamic Covalent Chemistry
Imine
Covalent organic framework
Linker
Cite
Citations (70)