logo
    The Connection Between the Hadley Circulation and Meridional Structure of Tropical SST during ENSO from 1950 to 1977
    0
    Citation
    42
    Reference
    10
    Related Paper
    Abstract:
    Abstract The connection between the meridional structure of tropical sea surface temperature (SST) and the Hadley circulation (HC) under the effect of ENSO (El Niño Southern Oscillation) from 1950 to 1977 is studied. We decompose the HC and zonal mean SST into equatorially symmetric (HES for HC, SES for SST) and asymmetric variations (HEA for HC, SEA for SST) to discuss the modulation of their connection by ENSO. During El Niño events from 1950 to 1977, the HC is less sensitive to the different SST meridional structures and expressed by response ratio. The ratio in La Niña and neutral events is around 4, which is equivalent to the result in the climatology. The reason for the decreased ratio during El Niño events is explored. The interdecadal variation in the linkage between the HC and tropical SST is due to a clear interdecadal shift in the impacts of ENSO on the tropical Indian Ocean (TIO) SST. For the period 1950–1977, when El Niño events occur, larger SST warming amplitude is observed over the northern TIO (0°–15°N, 50°–100°E). However, the southern TIO (15°S–0°, 50°–100°E) shows greater warming amplitude during 1980–2016. The anomalous SST variation over the TIO linked to El Niño events alters the meridional SST distribution, inducing anomalies in the meridional circulation. These results can help us to understand the interdecadal modulation by ENSO of the relationship between tropical SST and the HC.
    Keywords:
    Hadley cell
    Walker circulation
    Oscillation (cell signaling)
    Abstract The impact of El Niño on the Hadley Circulation (HC) has been a topic of previous studies, but the results have been inconclusive. We study how El Niño affects the HC during different stages of its cycle. In development years, the HC anomaly shows an equatorial quasi‐symmetric pattern, while in decay years, it shows an asymmetric pattern. This resolves previous discrepancies among studies about El Niño's impacts on the HC. The differences in tropical sea surface temperature (SST) during different stages of El Niño cause differences in SST meridional gradients, which determine the location of convergence. This explains why the HC anomalies have different spatial structures during El Niño development and decay years. Our results show that the meridional distribution of SST during different El Niño stages has significantly distinct impacts on meridional circulation and clarify the differences in El Niño's effects on climate.
    Hadley cell
    Anomaly (physics)
    Walker circulation
    Circulation (fluid dynamics)
    Atmospheric Circulation
    Citations (8)
    Abstract The possible influences of two types of ENSO [i.e., the canonical ENSO and ENSO Modoki (EM)] on Hadley circulation (HC) during the boreal spring are investigated during 1979–2010. El Niño events are featured with a symmetric pattern in equatorial zonal-mean sea surface temperature anomalies (SSTA), with a maximum around the equator. In contrast, the zonal-mean SSTA associated with El Niño Modoki events shows an asymmetric structure with a maximum around 10°N. The contrasting underlying thermal structures corresponding with ENSO and EM have opposite impacts on the simultaneous HC. In El Niño years, a symmetric anomalous meridional circulation is seen, with enhanced rising around the equator and anomalous descent at about 15°N and 20°S. In contrast, an asymmetric equatorial meridional circulation is observed for El Niño Modoki years, with anomalous ascent around 10°N and descent at about 10°S and 20°N. The contrasting meridional circulation anomalies within ENSO and EM are caused by their different meridional SSTA structure. This result is theoretically explained, indicating that anomalous meridional circulation is subject to the meridional SSTA gradient. Moreover, the observed results are reproduced in numerical experiments driven by anomalous warming in the eastern and central Pacific Ocean. Thus, the authors conclude that the anomalous HC linked to ENSO and EM is induced by the accompanying meridional gradient in zonal-mean SSTA.
    Hadley cell
    Walker circulation
    Citations (103)
    Based on four independent datasets, this study presents observational evidence of a shallow meridional circulation cell in the eastern tropical Pacific. In this shallow meridional circulation cell the northerly cross-equatorial return flow from the ITCZ into the Southern Hemisphere is found immediately above the atmospheric boundary layer, in contrast to the classic concept of the Hadley-type deep meridional circulation whose northerly return flow resides in the upper troposphere. The strength and depth of this shallow meridional circulation undergo a distinct annual cycle. Possible causes and climatic implications of this shallow meridional circulation are discussed.
    Hadley cell
    Walker circulation
    Intertropical Convergence Zone
    Meridional flow
    Circulation (fluid dynamics)
    Atmospheric Circulation
    Zonal flow (plasma)
    Abstract This study examines the response of the tropical atmospheric and oceanic circulation to increasing greenhouse gases using a coordinated set of twenty-first-century climate model experiments performed for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The strength of the atmospheric overturning circulation decreases as the climate warms in all IPCC AR4 models, in a manner consistent with the thermodynamic scaling arguments of Held and Soden. The weakening occurs preferentially in the zonally asymmetric (i.e., Walker) rather than zonal-mean (i.e., Hadley) component of the tropical circulation and is shown to induce substantial changes to the thermal structure and circulation of the tropical oceans. Evidence suggests that the overall circulation weakens by decreasing the frequency of strong updrafts and increasing the frequency of weak updrafts, although the robustness of this behavior across all models cannot be confirmed because of the lack of data. As the cli...
    Hadley cell
    Walker circulation
    Atmospheric Circulation
    Circulation (fluid dynamics)
    Citations (0)
    The Hadley circulation (HC), as a thermally driven large-scale meridional circulation, acts a significant role in the changes of global climate. The modulation of Indo-Pacific warm pool (IPWP) thermal conditions on the relationship between the HC and different tropical sea surface temperature (SST) meridional structures was investigated. Based on the two components of HC and SST, one equatorially asymmetric component (HEA for HC, SEA for SST) and one equatorially symmetric component (HES for HC, SES for SST), the connections of HC to different SST variations in the warm and cold IPWP are explored. The result demonstrates that the relationship of the HC to tropical SST is suppressed in the cold IPWP conditions, whereas it is equivalent to the climatology in the warm IPWP conditions. The plausible mechanism is that the cold (warm) IPWP events are in concordance with the La Niña (El Niño) decay phase. The La Niña decay phase are associated with significant equatorially asymmetric SST anomalies within the IPWP, generating an anomalous meridional circulation and favoring a strengthened equatorially asymmetric anomalous meridional circulation. By contrast, the SST anomalies associated with El Niño decay phase are insignificant. The role of La Niña decay conditions in determining the suppressed connection between SST and HC is further verified by exploring the result after 1979. A similar suppressed response contrast has been detected. Therefore, the results demonstrate that warm and cold ENSO events have impacts on the interannual thermal conditions of IPWP, whereby it plays considerable role in impacting the relationship between the HC and tropical SST. Particularly, with the rapid warming, the interconnection between ENSO events and thermal conditions of IPWP under different timescales could be altered, the influence of which on the responses of the HC to tropical SST remains uncertain and is worthy further researching.
    Hadley cell
    Walker circulation
    Abstract The connection between the meridional structure of tropical sea surface temperature (SST) and the Hadley circulation (HC) under the effect of ENSO (El Niño Southern Oscillation) from 1950 to 1977 is studied. We decompose the HC and zonal mean SST into equatorially symmetric (HES for HC, SES for SST) and asymmetric variations (HEA for HC, SEA for SST) to discuss the modulation of their connection by ENSO. During El Niño events from 1950 to 1977, the HC is less sensitive to the different SST meridional structures and expressed by response ratio. The ratio in La Niña and neutral events is around 4, which is equivalent to the result in the climatology. The reason for the decreased ratio during El Niño events is explored. The interdecadal variation in the linkage between the HC and tropical SST is due to a clear interdecadal shift in the impacts of ENSO on the tropical Indian Ocean (TIO) SST. For the period 1950–1977, when El Niño events occur, larger SST warming amplitude is observed over the northern TIO (0°–15°N, 50°–100°E). However, the southern TIO (15°S–0°, 50°–100°E) shows greater warming amplitude during 1980–2016. The anomalous SST variation over the TIO linked to El Niño events alters the meridional SST distribution, inducing anomalies in the meridional circulation. These results can help us to understand the interdecadal modulation by ENSO of the relationship between tropical SST and the HC.
    Hadley cell
    Walker circulation
    Oscillation (cell signaling)
    Abstract This study examines the response of the tropical atmospheric and oceanic circulation to increasing greenhouse gases using a coordinated set of twenty-first-century climate model experiments performed for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The strength of the atmospheric overturning circulation decreases as the climate warms in all IPCC AR4 models, in a manner consistent with the thermodynamic scaling arguments of Held and Soden. The weakening occurs preferentially in the zonally asymmetric (i.e., Walker) rather than zonal-mean (i.e., Hadley) component of the tropical circulation and is shown to induce substantial changes to the thermal structure and circulation of the tropical oceans. Evidence suggests that the overall circulation weakens by decreasing the frequency of strong updrafts and increasing the frequency of weak updrafts, although the robustness of this behavior across all models cannot be confirmed because of the lack of data. As the cli...
    Hadley cell
    Walker circulation
    Atmospheric Circulation
    Circulation (fluid dynamics)
    Robustness
    Citations (5)