logo
    A minimal mathematical model of neutrophil pseudopodium formation during chemotaxis
    2
    Citation
    38
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    The directed movement of neutrophils is provided by the rapid polymerization of actin with the formation of a protrusion growing forward. In our previous work we observed impaired neutrophil movement for patients with Wiskott-Aldrich syndrome (WAS) compared to healthy donors.In this work, we set out to explain the impairment of neutrophil chemotaxis in patients by observation and computer modeling of the linear growth rates of the anterior pseudopodia. The neutrophil chemotaxis was observed by means of low-angle fluorescent microscopy in parallel-plate flow chambers. The computational model was constructed as a network-like 2D stochastic polymerization of actin guided by the proximity of cell membrane with branching governed by Arp2/3 and WASP proteins.The observed linear velocity of neutrophil pseudopodium formation was 0.22 ± 0.04 μm/s for healthy donors and 0.23 ± 0.08 μm/s for WAS patients. The model described the velocity of the pseudopodium formation for healthy donors well. For the description of WAS patients data, a variation of branching velocity (governed by WASP) by an order of magnitude was applied, which did not significantly alter the linear protrusion growth velocity.We conclude that the proposed mathematical model of neutrophil pseudopodium formation could describe the experimental data well, but the data on overall neutrophil movement could not be explained by the velocities of the pseudopodium growth.
    Keywords:
    Pseudopodia
    Wiskott–Aldrich syndrome protein
    Branching (polymer chemistry)
    The actin cytoskeleton controls the overall structure of cells and is highly polarized in chemotaxing cells, with F-actin assembled predominantly in the anterior leading edge and to a lesser degree in the cell's posterior. Wiskott-Aldrich syndrome protein (WASP) has emerged as a central player in controlling actin polymerization. We have investigated WASP function and its regulation in chemotaxing Dictyostelium cells and demonstrated the specific and essential role of WASP in organizing polarized F-actin assembly in chemotaxing cells. Cells expressing very low levels of WASP show reduced F-actin levels and significant defects in polarized F-actin assembly, resulting in an inability to establish axial polarity during chemotaxis. GFP-WASP preferentially localizes at the leading edge and uropod of chemotaxing cells and the B domain of WASP is required for the localization of WASP. We demonstrated that the B domain binds to PI(4,5)P 2 and PI(3,4,5)P 3 with similar affinities. The interaction between the B domain and PI(3,4,5)P 3 plays an important role for the localization of WASP to the leading edge in chemotaxing cells. Our results suggest that the spatial and temporal control of WASP localization and activation is essential for the regulation of directional motility.
    Wiskott–Aldrich syndrome protein
    Cell polarity
    Pseudopodia
    Lamellipodium
    Citations (85)
    The directed movement of neutrophils is provided by the rapid polymerization of actin with the formation of a protrusion growing forward. In our previous work we observed impaired neutrophil movement for patients with Wiskott-Aldrich syndrome (WAS) compared to healthy donors.In this work, we set out to explain the impairment of neutrophil chemotaxis in patients by observation and computer modeling of the linear growth rates of the anterior pseudopodia. The neutrophil chemotaxis was observed by means of low-angle fluorescent microscopy in parallel-plate flow chambers. The computational model was constructed as a network-like 2D stochastic polymerization of actin guided by the proximity of cell membrane with branching governed by Arp2/3 and WASP proteins.The observed linear velocity of neutrophil pseudopodium formation was 0.22 ± 0.04 μm/s for healthy donors and 0.23 ± 0.08 μm/s for WAS patients. The model described the velocity of the pseudopodium formation for healthy donors well. For the description of WAS patients data, a variation of branching velocity (governed by WASP) by an order of magnitude was applied, which did not significantly alter the linear protrusion growth velocity.We conclude that the proposed mathematical model of neutrophil pseudopodium formation could describe the experimental data well, but the data on overall neutrophil movement could not be explained by the velocities of the pseudopodium growth.
    Pseudopodia
    Wiskott–Aldrich syndrome protein
    Branching (polymer chemistry)
    The role of WASP-interacting protein (WIP) in the process of F-actin assembly during chemotaxis of Dictyostelium was examined. Mutations of the WH1 domain of WASP led to a reduction in binding to WIPa, a newly identified homolog of mammalian WIP, a reduction of F-actin polymerization at the leading edge, and a reduction in chemotactic efficiency. WIPa localizes to sites of new pseudopod protrusion and colocalizes with WASP at the leading edge. WIPa increases F-actin elongation in vivo and in vitro in a WASP-dependent manner. WIPa translocates to the cortical membrane upon uniform cAMP stimulation in a time course that parallels F-actin polymerization. WIPa-overexpressing cells exhibit multiple microspike formation and defects in chemotactic efficiency due to frequent changes of direction. Reduced expression of WIPa by expressing a hairpin WIPa (hp WIPa) construct resulted in more polarized cells that exhibit a delayed response to a new chemoattractant source due to delayed extension of pseudopod toward the new gradient. These results suggest that WIPa is required for new pseudopod protrusion and prompt reorientation of cells toward a new gradient by initiating localized bursts of actin polymerization and/or elongation.
    Pseudopodia
    Wiskott–Aldrich syndrome protein
    Citations (10)
    The actin binding protein ABP-120 has been proposed to cross-link actin filaments in nascent pseudopods, in a step required for normal pseudopod extension in motile Dictyostelium amoebae. To test this hypothesis, cell lines that lack ABP-120 were created independently either by chemical mutagenesis or homologous recombination. Different phenotypes were reported in these two studies. The chemical mutant shows only a subtle defect in actin cross-linking, while the homologous recombinant mutants show profound defects in actin cross-linking, cytoskeletal structure, pseudopod number and size, cell motility and chemotaxis and, as shown here, phagocytosis. To resolve the controversy as to what the ABP-120- phenotype is, ABP-120 was re-expressed in an ABP-120- cell line created by homologous recombination. Two independently "rescued" cell lines that express wild-type levels of ABP-120 were analyzed. In both rescued cell lines, actin incorporation into the cytoskeleton, pseudopod formation, cell morphology, instantaneous velocity, phagocytosis, and chemotaxis were restored to wild-type levels. There is no alteration in the expression levels of several related actin binding proteins in either the original ABP-120- cell line or in the rescued cell lines, leading to the conclusion that neither the aberrant phenotype observed in ABP-120- cells nor the normal phenotype reasserted in rescued cells can be attributed to alterations in the levels of other abundant and related actin binding proteins. Re-expression of ABP-120 in ABP-120- cells reestablishes normal structural and behavioral parameters, demonstrating that the severity and properties of the structural and behavioral defects of ABP-120- cell lines produced by homologous recombination are the direct result of the absence of ABP-120.
    Pseudopodia
    Wiskott–Aldrich syndrome protein
    Citations (65)
    Many eukaryotic cells regulate their mobility by external cues. Genetic studies have identified >100 components that participate in chemotaxis, which hinders the identification of the conceptual framework of how cells sense and respond to shallow chemical gradients. The activation of Ras occurs during basal locomotion and is an essential connector between receptor and cytoskeleton during chemotaxis. Using a sensitive assay for activated Ras, we show here that activation of Ras and F-actin forms two excitable systems that are coupled through mutual positive feedback and memory. This coupled excitable system leads to short-lived patches of activated Ras and associated F-actin that precede the extension of protrusions. In buffer, excitability starts frequently with Ras activation in the back/side of the cell or with F-actin in the front of the cell. In a shallow gradient of chemoattractant, local Ras activation triggers full excitation of Ras and subsequently F-actin at the side of the cell facing the chemoattractant, leading to directed pseudopod extension and chemotaxis. A computational model shows that the coupled excitable Ras/F-actin system forms the driving heart for the ordered-stochastic extension of pseudopods in buffer and for efficient directional extension of pseudopods in chemotactic gradients.
    Pseudopodia
    Citations (67)
    We have used the chemotactic ability of Dictyostelium cells to examine the roles of Rho family members, known regulators of the assembly of F-actin, in cell movement. Wild-type cells polarize with a leading edge enriched in F-actin toward a chemoattractant. Overexpression of constitutively active Dictyostelium Rac1B 61L or disruption of DdRacGAP1, which encodes a Dictyostelium Rac1 GAP, induces membrane ruffles enriched with actin filaments around the perimeter of the cell and increased levels of F-actin in resting cells. Whereas wild-type cells move linearly toward the cAMP source, Rac1B 61L and Ddracgap1 null cells make many wrong turns and chemotaxis is inefficient, which presumably results from the unregulated activation of F-actin assembly and pseudopod extension. Cells expressing dominant-negative DdRac1B 17N do not have a well-defined F-actin-rich leading edge and do not protrude pseudopodia, resulting in very poor cell motility. From these studies and assays examining chemoattractant-mediated F-actin assembly, we suggest DdRac1 regulates the basal levels of F-actin assembly, its dynamic reorganization in response to chemoattractants, and cellular polarity during chemotaxis.
    Citations (145)