Unravelling fish community assembly in shallow lakes: Insights from functional and phylogenetic diversity
19
Citation
95
Reference
10
Related Paper
Citation Trend
Keywords:
Null model
Phylogenetic diversity
Functional Diversity
Community
Proxy (statistics)
Null model
Phylogenetic diversity
Functional Diversity
Community
Proxy (statistics)
Cite
Citations (19)
Microbial communities are typically large, diverse, and complex, and identifying and understanding the processes driving their structure has implications ranging from ecosystem stability to human health and well-being. Phylogenetic data gives us a new insight into these processes, providing a more informative perspective on functional and trait diversity than taxonomic richness alone. But the sheer scale of high resolution phylogenetic data also presents a new challenge to ecological theory. We bring a sampling theory perspective to microbial communities, considering a local community of co-occuring organisms as a sample from a larger regional pool, and apply our framework to make analytical predictions for local phylogenetic diversity arising from a given metacommunity and community assembly process. We characterize community assembly in terms of quantitative descriptions of clustered, random and overdispersed sampling, which have been associated with hypotheses of environmental filtering and competition. Using our approach, we analyze large microbial communities from the human microbiome, uncovering significant variation in diversity across habitats relative to the null hypothesis of random sampling.
Phylogenetic diversity
Metacommunity
Null model
Community
Trait
Cite
Citations (67)
Abstract Aim We examined the current biogeographical patterns of native fish communities throughout France, using a multifaceted taxonomic, functional and phylogenetic diversity approach. We then identified the contribution of individual species to each facet of watershed's native fish diversity. Location Continental France. Methods The taxonomic, functional and phylogenetic diversity of the fish communities were quantified at the watershed‐scale (i.e. alpha diversity approach), and congruencies between diversity facets were assessed. Variation between watersheds was then quantified (i.e. beta diversity approach) using Jaccard's dissimilarity index for all three facets of diversity, and congruencies were assessed. We subsequently determined the relationship between alpha and beta diversity for each diversity facet. Lastly, the mean relative contribution of each species to watershed's alpha taxonomic, functional and phylogenetic diversity was quantified. The conservation status of each species was considered to determine if threatened and endangered species contributed more significantly to watershed alpha diversity than common species. Results Across all watersheds, taxonomic, functional and phylogenetic diversity facets were found to be highly congruent using both the alpha and beta diversity approaches. In contrast, the relationship between the watersheds' alpha and beta diversity was primarily negative; watersheds with decreased beta diversity tended to have increased alpha diversity for all three facets. Individual species also rarely contributed prominently to more than one diversity facet, with conservation status insignificantly influencing species relative contributions. Main conclusions We found that native fish diversity ‘hotspots’ exist in France; exhibited in our results by areas of high, overlapping taxonomic, functional and phylogenetic diversity. Consequently, conservation planning approaches supported by species‐based metrics may concurrently target areas of increased ecological and evolutionary importance at the watershed‐scale. Interestingly, a diverse mosaic of species accounted for the different facets of diversity, suggesting that future reductions in species richness could have differential effects on each watershed's diversity facets.
Phylogenetic diversity
Gamma diversity
Taxonomic rank
Cite
Citations (68)
Gamma diversity
Phylogenetic diversity
Null model
Trait
Cite
Citations (57)
Phylogenetic diversity
Nestedness
Gamma diversity
Cite
Citations (85)
The mechanisms underlying the maintenance of biodiversity remain to be elucidated. Taxonomic diversity alone remains an unresolved issue, especially in terms of the mechanisms of species co-existence. We hypothesized that phylogenetic information could help to elucidate the mechanism of community assembly and the services and functions of ecosystems. The aim of this study was to explore the mechanisms driving floral diversity in subtropical forests and evaluate the relative effects of these mechanisms on diversity variation, by combining taxonomic and phylogenetic information.We examined 35 1-ha tree stem-mapped plots across eight national nature reserves in Guangxi Zhuang Autonomous Region, China.Trees.We quantified the taxonomic and phylogenetic β-diversity between each pair of plots using the (abundance-based) Rao's quadratic entropy and the (incidence-based) Sørensen dissimilarity indices. Using a null model approach, we compared the observed β-diversity with the expected diversity at random and calculated the standard effect size of the observed β-diversity deviation. Furthermore, we used distance-based redundancy analysis (dbRDA) to partition the variations in taxonomic and phylogenetic observed β-diversity and β-deviation into four parts to assess the environmental and spatial effects.The taxonomic β-deviation was related to and higher than the phylogenetic β-deviation (r = .74). This indicated that the species turnover between pairwise plots was mainly the turnover of closely related species. Higher taxonomic and phylogenetic β-deviation were mainly concentrated in the pairwise karst and nonkarst forest plots, indicating that the species in karst forests and nonkarst forests were predominantly from distantly related clades. A large proportions of the variation in taxonomic and phylogenetic β-deviation were explained by the joint effect of environmental and spatial variables, while the contribution of environmental variables was greater than that of spatial variables, probably owing to the influence of the sampling scale dependence, integrality of sampling size and species pool, and the unique climatic and geomorphic characteristics.Our study highlights the importance of phylogeny in biodiversity research. The incorporation of taxonomic and phylogenetic information provides a perspective to explore potential underlying mechanisms that have shaped species assemblages and phylogenetic patterns in biodiversity hotspots.
Phylogenetic diversity
Null model
Gamma diversity
Taxonomic rank
Cite
Citations (25)
In microbial ecology studies, the most commonly used ways of investigating alpha (within-sample) diversity are either to apply count-only measures such as Simpson's index to Operational Taxonomic Unit (OTU) groupings, or to use classical phylogenetic diversity (PD), which is not abundance-weighted. Although alpha diversity measures that use abundance information in a phylogenetic framework do exist, but are not widely used within the microbial ecology community. The performance of abundance-weighted phylogenetic diversity measures compared to classical discrete measures has not been explored, and the behavior of these measures under rarefaction (sub-sampling) is not yet clear. In this paper we compare the ability of various alpha diversity measures to distinguish between different community states in the human microbiome for three different data sets. We also present and compare a novel one-parameter family of alpha diversity measures, BWPD_\theta, that interpolates between classical phylogenetic diversity (PD) and an abundance-weighted extension of PD. Additionally, we examine the sensitivity of these phylogenetic diversity measures to sampling, via computational experiments and by deriving a closed form solution for the expectation of phylogenetic quadratic entropy under re-sampling. In all three of the datasets considered, an abundance-weighted measure is the best differentiator between community states. OTU-based measures, on the other hand, are less effective in distinguishing community types. In addition, abundance-weighted phylogenetic diversity measures are less sensitive to differing sampling intensity than their unweighted counterparts. Based on these results we encourage the use of abundance-weighted phylogenetic diversity measures, especially for cases such as microbial ecology where species delimitation is difficult.
UniFrac
Phylogenetic diversity
Operational taxonomic unit
Community
Gamma diversity
Diversity index
Cite
Citations (0)
In microbial ecology studies, the most commonly used ways of investigating alpha (within-sample) diversity are either to apply non-phylogenetic measures such as Simpson's index to Operational Taxonomic Unit (OTU) groupings, or to use classical phylogenetic diversity (PD), which is not abundance-weighted. Although alpha diversity measures that use abundance information in a phylogenetic framework do exist, they are not widely used within the microbial ecology community. The performance of abundance-weighted phylogenetic diversity measures compared to classical discrete measures has not been explored, and the behavior of these measures under rarefaction (sub-sampling) is not yet clear. In this paper we compare the ability of various alpha diversity measures to distinguish between different community states in the human microbiome for three different datasets. We also present and compare a novel one-parameter family of alpha diversity measures, BWPDθ, that interpolates between classical phylogenetic diversity (PD) and an abundance-weighted extension of PD. Additionally, we examine the sensitivity of these phylogenetic diversity measures to sampling, via computational experiments and by deriving a closed form solution for the expectation of phylogenetic quadratic entropy under re-sampling. On the three datasets, a phylogenetic measure always performed best, and two abundance-weighted phylogenetic diversity measures were the only measures ranking in the top four across all datasets. OTU-based measures, on the other hand, are less effective in distinguishing community types. In addition, abundance-weighted phylogenetic diversity measures are less sensitive to differing sampling intensity than their unweighted counterparts. Based on these results we encourage the use of abundance-weighted phylogenetic diversity measures, especially for cases such as microbial ecology where species delimitation is difficult.
Phylogenetic diversity
UniFrac
Operational taxonomic unit
Community
Gamma diversity
Cite
Citations (73)
In microbial ecology studies, the most commonly used ways of investigating alpha (within-sample) diversity are either to apply count-only measures such as Simpson's index to Operational Taxonomic Unit (OTU) groupings, or to use classical phylogenetic diversity (PD), which is not abundance-weighted. Although alpha diversity measures that use abundance information in a phylogenetic framework do exist, but are not widely used within the microbial ecology community. The performance of abundance-weighted phylogenetic diversity measures compared to classical discrete measures has not been explored, and the behavior of these measures under rarefaction (sub-sampling) is not yet clear. In this paper we compare the ability of various alpha diversity measures to distinguish between different community states in the human microbiome for three different data sets. We also present and compare a novel one-parameter family of alpha diversity measures, BWPD_\theta, that interpolates between classical phylogenetic diversity (PD) and an abundance-weighted extension of PD. Additionally, we examine the sensitivity of these phylogenetic diversity measures to sampling, via computational experiments and by deriving a closed form solution for the expectation of phylogenetic quadratic entropy under re-sampling. In all three of the datasets considered, an abundance-weighted measure is the best differentiator between community states. OTU-based measures, on the other hand, are less effective in distinguishing community types. In addition, abundance-weighted phylogenetic diversity measures are less sensitive to differing sampling intensity than their unweighted counterparts. Based on these results we encourage the use of abundance-weighted phylogenetic diversity measures, especially for cases such as microbial ecology where species delimitation is difficult.
UniFrac
Phylogenetic diversity
Operational taxonomic unit
Community
Gamma diversity
Diversity index
Cite
Citations (0)
The study of biodiversity has tended to focus primarily on relatively information‐poor measures of species diversity. Recently, many studies of local diversity (alpha diversity) have begun to use measures of functional and phylogenetic alpha diversity. Investigations into the phylogenetic and functional dissimilarity (beta diversity) of communities have been far less numerous, but these dissimilarity measures have the potential to infer the mechanisms underlying community assembly and dynamics. Here, we relate levels of phylogenetic and functional alpha diversity to levels of phylogenetic and functional beta diversity to infer the mechanism or mechanisms responsible for the assembly of tree communities in six forests located in tropical and temperate latitudes. The results show that abiotic filtering plays a role in structuring local assemblages and governing spatial turnover in community composition and that phylogenetic measures of alpha and beta diversity are not strong predictors of functional alpha and beta diversity in the forests studied.
Phylogenetic diversity
Gamma diversity
Temperate forest
Cite
Citations (236)