logo
    Cloning and characterization of spike and floral meristem identity genes in miracle wheat (Triticum turgidum var. mirabile)
    0
    Citation
    0
    Reference
    20
    Related Paper
    Keywords:
    Triticum turgidum
    Cloning (programming)
    The impact of the season on flowering time and the organization and morphogenesis of the reproductive structures are described in three tomato mutants: compound inflorescence (s), single flower truss (sft), and jointless (j), respectively, compared with their wild-type cultivars Ailsa Craig (AC), Platense (Pl), and Heinz (Hz). In all environmental conditions, the sft mutant flowered significantly later than its corresponding Pl cultivar while flowering time in j was only marginally, but consistently, delayed compared with Hz. The SFT gene and, to a lesser extent, the J gene thus appear to be constitutive flowering promoters. Flowering in s was delayed in winter but not in summer compared with the AC cultivar, suggesting the existence of an environmentally regulated pathway for the control of floral transition. The reproductive structure of tomato is a raceme-like inflorescence and genes regulating its morphogenesis may thus be divided into inflorescence and floral meristem identity genes as in Arabidopsis. The s mutant developed highly branched inflorescences bearing up to 200 flowers due to the conversion of floral meristems into inflorescence meristems. The S gene appears to be a floral meristem identity gene. Both sft and j mutants formed reproductive structures containing flowers and leaves and reverting to a vegetative sympodial growth. The SFT gene appears to regulate the identity of the inflorescence meristem of tomato and is also involved, along with the J gene, in the maintenance of this identity, preventing reversion to a vegetative identity. These results are discussed in relation to knowledge accumulated in Arabidopsis and to domestication processes.
    Raceme
    Citations (48)
    Summary Duplicated APETALA1/FRUITFULL ( AP1/FUL ) genes show distinct but overlapping patterns of expression within rice ( Oryza sativa ) and within ryegrass ( Lolium temulentum ), suggesting discrete functional roles in the transition to flowering, specification of spikelet meristem identity, and specification of floral organ identity. In this study, we analyzed the expression of the AP1/FUL paralogues FUL1 and FUL2 across phylogenetically disparate grasses to test hypotheses of gene function. In combination with other studies, our data support similar roles for both genes in spikelet meristem identity, a general role for FUL1 in floral organ identity, and a more specific role for FUL2 in outer floral whorl identity. In contrast to Arabidopsis AP1/FUL genes, expression of FUL1 and FUL2 is consistent with an early role in the transition to flowering. In general, FUL1 has a wider expression pattern in all spikelet organs than FUL2 , but both genes are expressed in all spikelet organs in some cereals. FUL1 and FUL2 appear to have multiple redundant functions in early inflorescence development. We hypothesize that sub‐functionalization of FUL2 and interaction of FUL2 with LHS1 could specify lemma and palea identity in the grass floret.
    A number of Eucalyptus species exhibit precocious flowering, flowering within a year of germination and often while still exhibiting juvenile foliage. To understand the nature of precocious flowering in Eucalyptusoccidentalis, partial homologues of the inflorescence meristem identity gene TERMINALFLOWER1 and of the floral meristem identity genes LEAFY and APETALA1 (EOTFL1, EOLFY and EOAP1, respectively) were isolated and characterized. The expression patterns of these meristem identity genes during the development of branched and single-stem plants were analysed by quantitative reverse transcriptase PCR. All E. occidentalis plants commenced flowering within 40 weeks of germination. However, the branched plants reached maximum flowering some 5–6 weeks earlier than did single-stem plants. Levels of EOTFL1 and EOLFY expression varied little during the study period irrespective of architecture treatment, whereas expression of EOAP1 reached a peak coincident with peak flowering in both branched and single-stem plants. AP1 is clearly an expression marker for flowering in this species.
    Leafy
    Citations (20)
    Abstract The initiation of the reproductive phase in winter cereals is delayed during winter until favorable growth conditions resume in the spring. This delay is modulated by low temperature through the process of vernalization. The molecular and genetic bases of the interaction between environmental factors and the floral transition in these species are still unknown. However, the recent identification of the wheat (Triticum aestivum L.) TaVRT-1 gene provides an opportunity to decipher the molecular basis of the flowering-time regulation in cereals. Here, we describe the characterization of another gene, named TaVRT-2, possibly involved in the flowering pathway in wheat. Molecular and phylogenetic analyses indicate that the gene encodes a member of the MADS-box transcription factor family that belongs to a clade responsible for flowering repression in several species. Expression profiling of TaVRT-2 in near-isogenic lines and different genotypes with natural variation in their response to vernalization and photoperiod showed a strong relationship with floral transition. Its expression is up-regulated in the winter genotypes during the vegetative phase and in photoperiod-sensitive genotypes during short days, and is repressed by vernalization to a level that allows the transition to the reproductive phase. Protein-protein interaction studies revealed that TaVRT-2 interacts with proteins encoded by two important vernalization genes (TaVRT-1/VRN-1 and VRN-2) in wheat. These results support the hypothesis that TaVRT-2 is a putative repressor of the floral transition in wheat.
    Vernalization
    MADS-box
    Citations (139)