Abstract:
The concept of and approach to multiple organ dysfunction syndrome (MODS), also known as progressive systems failure, multiple organ failure, and multiple system organ failure, have evolved over the last decade. Characterized by progressive but potentially reversible tissue damage and dysfunction of two or more organ systems that arise after a significant physiologic insult and its subsequent management, MODS evolves in the wake of a profound disruption of systemic homeostasis. Pre-existing illness, nutritional status, hospital course, and genetic variation all lead to the development of organ dysfunction in patients exposed to these risk factors. The ultimate outcome from MODS is influenced not only by a patient’s genetic and biological predisposition but also by specific management principles practiced by intensivists. This review details the clinical definitions, quantification, prevention, evaluation, support, and outcomes of organ dysfunction. A figure shows the increasing severity of organ dysfunction correlated with increasing intensive care unit mortality, and an algorithm details the approach to MODS. Tables list risk factors and prognosis for MODS, the multiple organ dysfunction (MOD) score, the sequential organ failure assessment (SOFA) score, intensive care unit interventions that reduce mortality or attenuate organ dysfunction along with unproven or disproven ICU interventions, and the temporal evolution of MODS. This review contains 1 figure, 7 tables, and 159 references.Keywords:
Organ dysfunction
Organ system
SOFA score
The concept of and approach to multiple organ dysfunction syndrome (MODS), also known as progressive systems failure, multiple organ failure, and multiple system organ failure, have evolved over the last decade. Characterized by progressive but potentially reversible tissue damage and dysfunction of two or more organ systems that arise after a significant physiologic insult and its subsequent management, MODS evolves in the wake of a profound disruption of systemic homeostasis. Pre-existing illness, nutritional status, hospital course, and genetic variation all lead to the development of organ dysfunction in patients exposed to these risk factors. The ultimate outcome from MODS is influenced not only by a patient’s genetic and biological predisposition but also by specific management principles practiced by intensivists. This review details the clinical definitions, quantification, prevention, evaluation, support, and outcomes of organ dysfunction. A figure shows the increasing severity of organ dysfunction correlated with increasing intensive care unit mortality, and an algorithm details the approach to MODS. Tables list risk factors and prognosis for MODS, the multiple organ dysfunction (MOD) score, the sequential organ failure assessment (SOFA) score, intensive care unit interventions that reduce mortality or attenuate organ dysfunction along with unproven or disproven ICU interventions, and the temporal evolution of MODS. This review contains 1 figure, 7 tables, and 159 references.
Organ dysfunction
Organ system
Cite
Citations (1)
Since its introduction into the medical literature in the 1970s, the term multiple organ dysfunction syndrome (or some variant) has been applied broadly to any patient with >1 concurrent organ dysfunction. However, the epidemiology, mechanisms, time course, and outcomes among children with multiple organ dysfunction vary substantially. We posit that the term pediatric multiple organ dysfunction syndrome (or MODS) should be reserved for patients with a systemic pathologic state resulting from a common mechanism (or mechanisms) that affects numerous organ systems simultaneously. In contrast, children in whom organ injuries are attributable to distinct mechanisms should be considered to have additive organ system dysfunctions but not the syndrome of MODS. Although such differentiation may not always be possible with current scientific knowledge, we make the case for how attempts to differentiate multiple organ dysfunction from other states of additive organ dysfunctions can help to evolve clinical and research priorities in diagnosis, monitoring, and therapy from largely organ-specific to more holistic strategies.
Organ dysfunction
Organ system
Cite
Citations (16)
Organ dysfunction
SOFA score
Cite
Citations (264)
Organ system
Organ dysfunction
Pathophysiology
Cite
Citations (1)
The concept of and approach to multiple organ dysfunction syndrome (MODS), also known as progressive systems failure, multiple organ failure, and multiple system organ failure, have evolved over the last decade. Characterized by progressive but potentially reversible tissue damage and dysfunction of two or more organ systems that arise after a significant physiologic insult and its subsequent management, MODS evolves in the wake of a profound disruption of systemic homeostasis. Pre-existing illness, nutritional status, hospital course, and genetic variation all lead to the development of organ dysfunction in patients exposed to these risk factors. The ultimate outcome from MODS is influenced not only by a patient’s genetic and biological predisposition but also by specific management principles practiced by intensivists. This review details the clinical definitions, quantification, prevention, evaluation, support, and outcomes of organ dysfunction. A figure shows the increasing severity of organ dysfunction correlated with increasing intensive care unit mortality, and an algorithm details the approach to MODS. Tables list risk factors and prognosis for MODS, the multiple organ dysfunction (MOD) score, the sequential organ failure assessment (SOFA) score, intensive care unit interventions that reduce mortality or attenuate organ dysfunction along with unproven or disproven ICU interventions, and the temporal evolution of MODS. This review contains 1 figure, 7 tables, and 159 references.
Organ dysfunction
Organ system
Cite
Citations (0)
The surgical field had put forward the concept of multiple organ dysfunction syndrome (MODS)in 1970's of 20th century,This concept developed from the original.sequential organ failure to multiple system organ failure,and then to multiple organ failure,at last to multiple organ dysfunction syn-drome.Although this developmental process lasted for several decades,the concept of MODS still have many deficiencies and shortcomings until today and need to make further exploration and research.
Key words:
Multiple organ dysfunction syndrome; Multiple organ failure; MODS
Organ dysfunction
Organ system
Cite
Citations (0)
The concept of and approach to multiple organ dysfunction syndrome (MODS), also known as progressive systems failure, multiple organ failure, and multiple system organ failure, have evolved over the last decade. Characterized by progressive but potentially reversible tissue damage and dysfunction of two or more organ systems that arise after a significant physiologic insult and its subsequent management, MODS evolves in the wake of a profound disruption of systemic homeostasis. Pre-existing illness, nutritional status, hospital course, and genetic variation all lead to the development of organ dysfunction in patients exposed to these risk factors. The ultimate outcome from MODS is influenced not only by a patient’s genetic and biological predisposition but also by specific management principles practiced by intensivists. This review details the clinical definitions, quantification, prevention, evaluation, support, and outcomes of organ dysfunction. A figure shows the increasing severity of organ dysfunction correlated with increasing intensive care unit mortality, and an algorithm details the approach to MODS. Tables list risk factors and prognosis for MODS, the multiple organ dysfunction (MOD) score, the sequential organ failure assessment (SOFA) score, intensive care unit interventions that reduce mortality or attenuate organ dysfunction along with unproven or disproven ICU interventions, and the temporal evolution of MODS. This review contains 1 figure, 7 tables, and 159 references.
Organ dysfunction
Organ system
SOFA score
Cite
Citations (0)
Abstract Multiple organ dysfunction syndrome (MODS) is a spectrum of physiologic maladaptation in separate organs that leads to significant morbidity and mortality in intensive care unit patients. This dysfunction is rooted in the dysregulated immune response and imbalance of the pro-inflammatory and anti-inflammatory responses to a degree that homeostatic mechanisms fail to self-regulate. As a result, multiorgan failure and significant organ injury occurs. MODS is defined and quantified by assessment of injury to six vital organ systems: cardiovascular, respiratory, hepatic, renal, hematologic, and neurologic systems. Some studies have defined a numerical scaling system to quantify the degree of organ dysfunction and relative outcome measures associated. To date, the best therapy is supportive care and avoidance of further injury. It is quite evident to us that the single most effective intervention is one of primary prevention, whereby we try to prevent the failure of organs as they show manifestations of early involvement.
Maladaptation
Organ dysfunction
Organ system
Cite
Citations (0)
There is as yet no precise definition of the multiple organ failure syndrome, or what is today more appropriately termed the multiple organ dysfunction syndrome (MODS). Clinically MODS can be considered as a sequential or concomitant occurrence of a significant derangement of function in two or more organ systems of the body, against a background of a critical illness. Organ dysfunction may be mild, moderate or severe, and multiple organs may show varying degrees of dysfunction. There is no universally acceptable classification system which defines parameters of organ specific failure. An ACCP/SCCM Consensus Conference which was held in 1991, defined MODS as “the presence of altered function in an acutely ill patient such that homeostasis cannot be maintained without intervention”. 1 This con
Organ dysfunction
Organ system
Cite
Citations (18)
Organ dysfunction
Organ system
Endothelial Dysfunction
Cite
Citations (7)