logo
    Whole-body short-chain fatty acid (SCFA) production rates and plasma concentrations are not associated with health characteristics in human adults
    1
    Citation
    0
    Reference
    10
    Related Paper
    Citation Trend
    Two publicly available oat (Avena sativa) lines, "Jim" and "Paul" (5.17 and 5.31% β-glucan, respectively), and one experimental oat line "N979" (7.70% β-glucan), were used to study the effect of β-glucan levels in oat flours during simulated in vitro digestion and fermentation with human fecal flora obtained from different individuals. The oat flours were digested by using human digestion enzymes and fermented by batch fermentation under anaerobic conditions for 24 h. The fermentation progress was monitored by measuring pH, total gas, and short-chain fatty acid (SCFA) production. Significant effects of β-glucan on the formation of gas and total SCFA were observed compared to the blank without substrate (P < 0.05); however, there were no differences in pH changes, total gas, and total SCFA production among oat lines (P > 0.05). Acetate, propionate, and butyrate were the main SCFA produced from digested oat flours during fermentation. More propionate and less acetate were produced from digested oat flours compared to lactulose. Different human fecal floras obtained from three healthy individuals had similar patterns in the change of pH and the production of gas during fermentation. Total SCFA after 24 h of fermentation were not different, but the formation rates of total SCFA differed between individuals. In vitro fermentation of digested oat flours with β-glucan could provide favorable environmental conditions for the colon and these findings, thus, will help in developing oat-based food products with desirable health benefits.
    Avena
    Digestion
    Short-chain fatty acid
    Mixed acid fermentation
    Citations (68)
    The effects of lactate and probiotic lactic acid bacteria (LAB) on intestinal fermentation were analyzed using a fecal batch culture. Lactate was efficiently metabolized to butyrate and propionate by butyrate-utilizing bacteria in fecal fermentation. Probiotic LAB could stimulate butyrate and propionate production through their lactate production in fecal fermentation. It was considered that 109 cfu/g or more of probiotic LAB would be required to stimulate butyrate and propionate production in the large intestine. Due to the low production of lactate, a larger number of heterofermentative LAB than homofermentative LAB would be required for this stimulation.
    Short-chain fatty acid
    Human feces
    Citations (0)
    Metabolite production and antioxidant released during colonic fermentation of naturally occurring dietary fiber (DF) from two European diets (Mediterranean and Scandinavian) were determined. With this aim, DF and associated components were isolated from both whole diets, as well as from cereals and fruits and vegetables comprising the diets. DF was used as substrate for colonic fermentation in a dynamic in vitro model of the colon, samples were collected, and fermentation metabolites were analyzed. Statistical differences between samples were observed in the concentrations of short-chain fatty acids and ammonia and in the ratio acetate/propionate/butyrate. Whole grain cereal DF generated a larger amount of propionate than refined flour cereal DF. Fruit and vegetable DF generated higher amounts of butyrate than cereal DF. Most antioxidant compounds were released from DF during in vitro colonic fermentation. It is concluded that different sources of DF may play a specific role in health maintenance mediated by metabolites produced during colonic fermentation.
    Short-chain fatty acid
    Citations (57)
    Dietary fibre sources are fermented by the gut flora to yield short-chain fatty acids (SCFA) together with degraded phytochemicals and plant nutrients. Butyrate, a major SCFA, is potentially chemoprotective by suppressing the growth of tumour cells and enhancing their differentiation. Conversely, it could lead to a positive selection pressure for transformed cells by inducing glutathione S-transferases (GST) and enhancing chemoresistance. Virtually nothing is known about how butyrate's activities are affected by other fermentation products. To investigate such interactions, a variety of dietary fibre sources was fermented with human faecal slurries in vitro, analysed for SCFA, and corresponding SCFA mixtures were prepared. HT29 colon tumour cells were treated for 72 h with individual SCFA or complex samples. The growth of cells, GST activity, and chemoresistance towards 4-hydroxynonenal were determined. Fermentation products inhibited cell growth more than the corresponding SCFA mixtures, and the SCFA mixtures were more active than butyrate, probably due to phytoprotectants and to propionate, respectively, which also inhibit cell growth. Only butyrate induced GST, whereas chemoresistance was caused by selected SCFA mixtures, but not by all corresponding fermentation samples. In summary, fermentation supernatant fractions contain compounds that: (1) enhance the anti-proliferative properties of butyrate (propionate, phytochemical fraction); (2) do not alter its capacity to induce GST; (3) prevent chemoresistance in tumour cells. It can be concluded that fermented dietary fibre sources are more potent inhibitors of tumour cell growth than butyrate alone, and also contain ingredients which counteract the undesired positive selection pressures that higher concentrations of butyrate induce in tumour cells.
    Flora
    Dietary fibre
    Citations (108)
    Four steer with permanent rumen and cannulas were chosen and arranged in a 4×4 latin square trial.2%,4% and 6% of long-chain fatty acids calcium was supplemented to the base diet.The experiment was conducted to study the effects of different levels of protected fat on rumen fermentation.The results showed as follows:The rumen fermentation characteristics such as acetate,propionate and butyrate content,and acetarte/propionate ration,were not affected by supplementing long-chain fatty acids calcium.
    Latin square
    Short-chain fatty acid
    Volatile fatty acids
    Citations (0)